
COMP2310 Introduction
Course co-ordinator: Richard Walker
E-mail: richard@cs
Room: N315
Phone: x53785

Text:

Jean Bacon,Concurrent Systems, second edition,
Addison-Wesley, 1998.
Reference:

George Coulouris et al.,Distributed Systems:
Concepts and Design, second edition,
Addison-Wesley, 1994. I recommend the fourth
or fifth impression.
I will refer to other sources when necessary.

What are we doing today?
• What this course is about.
• What I expect you to know already.
• What is my job?
• What is your job?
• How will you be assessed?
• Some basic issues.
• What to do next.

What this course is about
How to understand, design, and build concurrent
and distributed systems.
• concepts and abstractions
• what makes a good concurrent/distributed

system
• how they can fail
• design choices
• language support for concurrent and

distributed processing (C/Unix and Java)

• tools to help you to build concurrent and
distributed systems

• how to diagnose problems and fix them
What I expect you to know already

(or learn by yourself)

• well-honed skills in Eiffel
• basic programming skills in C
• how to write well-documented programs
• software tools:make andRCS
• basic concepts of literate programming
• how to use Emacs
• how to write in coherent English

If the last point is a problem for you,get help
from the Study Skills Centre.

What’s my job?
What I must do for you:
• Help you to understand the concepts,

issues, and skills in building concurrent
and distributed systems.

• Make the course as relevant as possible.
Use ‘bleeding edge’ technology!

• Make sure that we have a good time.
What I must do for the community:
• Assess and certify your competence in

these areas.
What’s your job?

• Be curious!
• Participatein the lectures, labs,

assignments, and exams.
• Communicate:if you have a problem,

question, or a suggestion, talk to me or
your tutor as soon as possible.

• Planhow you will use your time.
– Some people program many times

faster than others.
– Even slow programmers make good

money.
– But first you need to pass this course.
– Know your own ability and plan

accordingly.

Practical assessment
It is a course objective that you acquire certain
practical skills.
• Writing skills.
• Programming skills.
• All programming will beliterate.
• Two programming assignments (one done

in pairs).
• One written assignment.
• Tutorial participation. Preparation and

various skills.
Exam assessments

Exam assessment is needed to calibrate your
achievement.

• Midsemester quiz (10%)
• Final exam (40%)

The exams will test your knowledge of basic
facts, understanding of basic concepts, and
ability to evaluate solutions.

What if I hand my assignment in late?
• You must hand in an acceptable solution

within 2 weeks of the deadline to pass this
course.

1



• Late assignments (less than 2 weeks) will
be devalued as follows:

finalMark = originalMark× 1
daysLate

7 + 1

.......................................................................................................................................................................................................................................................................................................

0 7 14
days late

50%

100%

• If you have a problem, come to see me
early.

The assessment in detail . . .
• 50% exam component:

– 10% redeemable mid-semester;
– 40% final.

• 50% practical component:
– 5% lab participation;
– 15% C assignment;
– 15% ‘theory’ assignment;
– 15% Java assignment.

• Mid-semester compulsory (and you must
get at least 40%).

• Concrete assignment specifications, a
sample executable (for C), and lots of
hints.

How your mark might be computed
public static int finalGrade(int theory, prac)

{
int worst = Math.min(theory, prac);
int average = (theory + prac) / 2;

int capped = Math.min(average, worst + 10);
if (worst < 40) { /* Need 40% on both to pass. */

return Math.min(capped, 44);
} else {

return capped;
}

}

Some basic issues
• How to declare concurrency.
• How to synchronize processors.
• How to communicate ‘results’.
• How to preventprocessing or

communicationerrors.
• How to recoverfrom them.
• How best todistributetheworkload.

Systems we can study
• C/Unix and Java
• Message Passing Interface (MPI)
• Sockets and XTI
• Ada, occam, Linda
• RPC, RMI, CORBA, DCOM, . . .
• Anything else?

What to do next
• Register for a lab group.
• Get the reading brick ($5) before the next

lecture.
• Get Bacon and read chapter 1.
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Concurrency
• Concurrent- the word

Dictionary meaning:
At the same time.

Is that clear?
Each activity starts before the
other finishes.

• Examples
A person talking

|| a person listening
Jack’s program

|| Jill’s program (on iwaki)
What’s the difference?

Concurrent Systems
• What are they?

They handle concurrent activities
• Are they Hardware or Software?

Either!
Processor or process

• Coming up
Inherentlyconcurrent systems.
Potentiallyconcurrent systems.

Inherently Concurrent Systems (1)
Real-time systems

• Examples

– Chemical plants
– Power Plants
– Patient Monitoring systems
– Vehicles
– Robots
– Telephone Network
– Virtual reality

• Significant Notions
Hard real-time v. soft real-time
Static and Dynamic systems
Distribution
Embedded systems

Component computer
(see enlargement)
Sensor for monitoring
or actuator for
controlling the process

Process under control

Human management,
persistent storage

Control
centre

Process under control

Network

Example of a distributed process control system

One component computer
in more detail Sensor Actuator

InterfaceInterface

Monitoring activity:
gather data
analyse data
report results

Control activity:
respond to
alarms,
respond to
management

Computer
system

Network interface

Network

Inherently Concurrent Systems (2)
Database systems

• Examples

– Banking systems
– Reservation systems

– Inventory
– Libraries
– Personal records
– CAD

• Important Concepts

– Queries v. updates
– Batch processing
– Transaction processing
– Distribution

Booking System

Network

Database containing
flight information

Booking clerks
at remote
terminals

Components of an Airline Booking System

Top-Level
network
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Part of the early SITA private network

Inherently Concurrent Systems (3)
Operating systems

• Absolute basis:
Peripherals are autonomous

• Where it started:
Concept of concurrent processes was
developed by OS designers

• Uniprocessor OS is concurrent
At least conceptually
Separating concerns
Disparate activities are processes
System level & user level

• Distributed OS
Physical separation of activities

Devices Memory User’s I/O
devices

Disk

Printer

OPERATING
SYSTEM

User’s
programs

Processor (CPU)

Screen

Keyboard

Components of a single-user system

Devices Memory Users’ I/O
devices

(terminals)

Disk

Disk

Disk

Tape

Tape

Printer

Printer

OPERATING
SYSTEM

Users’
programs

Processor (CPU)

Processor (CPU)

Screen

Screen

Screen

Keyboard

Keyboard

Keyboard

Components of a multi-user system

User at
workstation

User at
workstation

User at
workstation

User at
workstation

User at
workstation

User at
workstation

File server

File server File server

File server

Network

Network

Gateway

A simple distributed operating system

Potentially Concurrent Systems (1)
Parallel Machines (a)

• Several or many processors

MemMemMem

ProcProcProc

• Many possible architectures
Usually homogenous

• Application Areas
Physics, Chemistry

• Grand Challenge Problems
Chemistry, Code Cracking,
Astrophysics, Climate, . . .

Parallel Machines (b)

• Local examples
– ANU/CSIRO

Fujitsu,
Thinking Machines,
Maspar

– DCS & Fujitsu
AP1000 (CAP) [1990]

128 SPARC processors
16 MB memory each

Parallel Machines (c)

• Current Local Machines
– AP1000+, AP3000 [1996]
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12 SPARC processors
16 MB memory each

• Significance
– Scalability experiments for

visualisation, object stores and
operating systems.

Parallel Machines (d)
Current Local Machines
• Bunyip [2000]
• http://tux.anu.edu.au/Projects/Bunyip/
• ‘Beowulf’ style
• 96 2-CPU ‘commodity’ PCs + 2 2-CPU

front ends = 196 Pentium IIIs
• 384 MB memory in each box
• 13.6 GB hard disk in each box
• Very fancy networking (see web page)

based on clusters
Architectural Jargon - Parallel Machines
• SISD / SIMD / MIMD

– A classification of architectures

S = Single M = Multiple
I = Instruction D = Data

• SISD
– Single Instruction, Single Data

– The Uniprocessor
• MIMD - Multicomputer

– Loosely-coupled
(network of workstations)

– Tightly coupled (AP1000)

Vector Machines
• SIMD - Single Instruction, Multiple Data

– Operations apply to vectors of data
– generalisation of bitwise logical

operations

*  *  *  *  *  *

*  *  *  *  *  *

*  *  *  *  *  *OP1

OP2

result

– One processor per element of
vector

– All processors in lockstep
– Has conditional adds but no

conditional jumps
– ICL DAP (Distributed Array Proc.)
– CM2 (Connection Machine)

Virtual SIMD
• Recall Notion of Virtual Machine

– Any machine can be simulated
– Remember "Virtual memory"

• Data parallel languages

– All the primitive operations apply to
vectors
(Think of + on vectors)

– Defined operations do too

• Examples

– APL (1962)
(A Programming Language)

– SISAL (circa 1990)

Virtual MIMD
• Time-sharing

– The case of X-terminals:
1 processor, many processes

• General case

– n processors and m processes
(where m > n)

– User may not be aware of how many
CPUs are being used.

Parallel Machines Memory Organization
• Shared memory

– Each processor has direct access to
every word of one big memory (e.g.
Sequent Symmetry, karajan)

• Distributed memory
– Each processor has its own private

memory
• Virtual shared memory

– A layer of software can make a
Distributed Memory Machine seem
like it has shared memory

Memory Organization (1)
Shared Memory

• Logical View
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Shared Memory

Proc ProcProcProc

Memory Organization (2)
Implementation

• Standard Design
There’d be a bus.
Can have just a few processors.

Shared Memory

ProcProcProcProc

Hardware ensures that no two processors
update one location at the same time.

Memory Organization (3)
Distributed Memory (a)

• Logical View

Mem Mem Mem Mem
ProcProcProcProc i/o

– Programs must communicate via
messages

– Need I/O processors
– Need a communication medium
– It may be a bus

• Direct connections possible

Distributed Memory (b)
• The AP1000 again

– Most pairs areindirectly connected!
– Each cell has I/O processor
– Messages go right then down
– Concurrent messages are possible.
– Toroidal structure
– Scalable!

Memory Organization (4)
Virtual Shared Memory (a)

• The simulation of a single address space
on a Distributed Memory machine.

• The mechanism
– Each address can be split,

say

6 26

– Top 6 bits could give the cell number
– or they could be a page number

(where page could be anywhere).

Virtual Shared Memory (b)
Issues

• Hardware support
– Must have specialised

communications circuits
• Local versus non-local (NUMA)

– Local references are faster
– Code in local memory

• Locality of Programs/Data
– Make variables local!

• Programming languages
– Consequences in design & especially

in implementation

Memory Organization (5)
Memory Caches (a)

• CPUs faster than main memories
– even faster than shared main

memories
– much faster than nonlocal memories

• Examples
– Contrast

m = n∗n;
on a 1-address machine

– with
x = a + b; w = x + 1;
y = a∗x∗w + b∗x + w;

on a register machine
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Memory Caches (b)
• Single processor cache

– Generalize from register machine

Memory

Cache

CPU

– cache is associative memory

Memory Caches (c)
• Multi-processor case

Shared Memory

CacheCacheCacheCache

ProcProcProcProc

– Cache coherence problem

Data-Flow Architectures
• Sequencing constrains computation

unnecessarily

z = x+y;
c = a-b;
k = m/n;

ans = f(z)/(c+k);

• Can use dependencies to control
computation

x + y a− b m/n

z = 2 c = 2 k = 2

f(2) 2 + 2

2/2

ans = 2

Functional Language Machines

• Miranda, ML, Lisp
• No side effects

f( g(e1, e2), h(e3, e4))

– maybe 7 computations here to do in
parallel

• Eager v. Lazy evaluation
– Each can save time
– Each can waste time

W

W

W

WW

WWW
W

W

W

W

W

W

S

S

S

SS

S

S

S

S

= Workstation

= Server

= Repeater

Central
switch

Star topology

Bus topology

Ring topology

Star, Bus and ring LAN topologies

WWW

WWW

SS

S

H

H

H

H

H

G

G

G

G

G

G

R
R

R R

LAN

LAN

WAN Local
internetwork

Local
internetwork

Local
internetwork

W = Workstation
H = Host
S = Server
G = Gateway
R = Router

LANs connected by WANs
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Novel architectures:
dataflow and functional

language machines

Vector and
array processors

Uniprocessor

One CPU with
special-purpose
front-end and

back-end
processors

Shared-memory
multiprocessor

(symmetric or with
special-purpose

processors)

Multicomputer
multiprocessor

LAN

Local-internet

LAN/WAN
systems

In all the networks
shown the attached

computers may
be of any type

Summary of concurrent system topologies
Arrows take you in a direction of increasing

concurrency
Fundamental Features of Concurrent Systems
• Support for Tasks

– Real-time – obvious
– OS – users, devices
– Database systems – transactions
– Supercomputers

– processors have processes
• Support for Task Management

– Create, run, kill, suspend, nice
• Support for Co-operation

– Sharing of resources
– Messages

• Support for Protection
– Support virtual machines

• Support for Deadlines
– Alarms

– Simulation

References
(Overview of Concurrent Systems)

• Required Reading
– Bacon, Chapter 1

• Supplementary Reading
– Chapter 1 of any OS text
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Introduction to Processes (1)
• Definition – Per Brinch Hansen

A processis a computation in which the
operations are carried out strictly one at a
time; concurrent processes overlap in time.
They aredisjoint if each refers to private
data only andinteracting if they refer to
common data.
(A computation is a finite sequence of
operations applied to a finite collection of
data.)

Introduction to Processes (2)
• process6= program

Theprocessrelates to the execution of
operations. It’s about what happens on
some occasion.
Theprogram is the recipe for a
computation. It is text that is followed in a
process.

Introduction to Processes (3)
• Examples

– Programs and processes in a Unix
system.

– Tasks on an assembly line.
– Musicians – Distinguish the score

and each performance.
– The shared family book.

(Jean Bacon)

UNIX
• Origins - The Multics Project

– MIT and GE
– Ken Thompson, Dennis Ritchie

– The C language
– PDP 7, then PDP 11

• Features
– Hierarchical file system
– Compatible I/O (file, device &

inter-process)
– Process creation
– Command language choice
– Portability

• Descendants
– Version 7, BSD 4.2, 4.3, 4.4
– System V, Solaris
– XINU, Minix
– Linux
– Mach (e.g. Darwin, Mac OS X)

UNIX Processes (1)
What are they?

• The Unix Virtual Machine?

– The state of a uni-process virtual
machine

– Private memory, code, registers,
program counter

Program
(machine code)

Static data

Heap

Stack

Memory
in CPU

PSW
PC

Other
info.

UNIX Processes (2)
Reproduction

• In UNIX, process creation is by cloning!
In the standard Unix C library there is a
function fork.

• Typical usage: pid = fork();
• fork spawns a duplicate

- same memory, regs, PC
• fork returns:

– 0 to child;
– and to parent:

PID (process id) if it works
-1 if it fails
never0

UNIX Processes (3)
A Change of Mind

• Maybe another program is more suitable?

– Passing responsibility
– Many computations have quite

different phases
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– A child process may need to do a
very different job

• MODULE UxProcesses - again
public native int Exec1(String prog, String argt);

File Name
(absolute) Argument array

(Unix format)
• Similar functions in C

UNIX Processes (4)
Semantics ofexec

• Call of typical family member

Exec1(filnam, args);

• does the following:

– Memory is replaced by the image
given in the executable file

– Registers initialized in the usual way
for a program

– Parameters are passed as if the new
program was called from the shell

– Only returns in case of a failure

UNIX Processes (5)
More about exec

• Typical Usage:

if (Fork() == 0) {

Execp("/usr/bin/grep",

Arg2("grep", keyword));

Abort();

} else {

<rest of PARENT program>

}

• Questions:

– What is the child?
– What is concurrent?
– Why doesgrep appear twice?
– Why might it abort?

UNIX Processes (6)
Requiem

• Co-ordination can be a problem

– A child was spawned to do
something in parallel

– At some point the parent must be
sure it is complete

• The Wait primitive solves it

public native int Wait();

(* from Class UxProcesses *)

– Waits for termination of a child - any
child

– Returns PID of the child that has died

UNIX Processes (7)
Example of wait

• Pattern of Usual Usage
if (Fork() == 0) {

<Child’s task>

UNIXexit(0);

} else {

<Parent’s task>

Wait(Codes);

}

• Concurrency?

UNIX Processes (8)
Dozing

• Why wait for time to pass?

– It may want to do something
periodically

– It can make sure other processes get
a chance

• The Sleep primitive solves it
public native int Sleep(int secs);

(* from Class UxProcesses *)

– The supplied argument is the
duration (in seconds)

– May return early if woken up (by
signal)

– Result indicates sleep-time
remaining

– Use of sleep(0)

UNIX Shells (1)
• Job control language

– Pre-Unix JCLs were proprietary,
idiosyncratic

• Not part of Operating System

– But must reflect its facilities
– Can have a shell per user.

• There are many common ones
– sh - Bourne shell
– csh - C-shell
– ksh - Korn shell
– tcsh - Extended C-shell
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– bash - Bourne-again shell
Though these are all similar!

UNIX Shells (2)
• Features of the shell

– A virtual machine
– Has a language
∗ can invoke programs
∗ types, variables, control

– Can write programs

• Access to Unix’s hierarchical file system
supported bycd, pwd, ls etc.

• Uniform I/O is supported by re-direction
of stdin& stdout

– ls -als >DIR

– ls -als >/dev/mt0

– ls -als | grep def

UNIX Shells (3)
• Processes supported by shells

– ps

– emacs George.java &

– ps -axu | grep mcn

• Can write executable programs in shell
code

– Usual terminology -scripts

• Interpreted, not compiled
• First line of file indicates the appropriate

interpreter.

C-Shell Scripts
An Example

• Example of shell script
#! /bin/csh

set filist = ‘cat $1‘
foreach nam ( $filist )

if (-e $nam) then
cp $nam $2/$nam.bak

else
echo $nam "doesn’t exist."

endif
end

• What does it do?
Suppose script is in file~/bin/save

Thensave workfiles ../backup will
copy each file mentioned in the file workfiles
to the directory called backup with a .bak
extension.

• Notes
$1 and$2 refer to the arguments;
$nam gives the value of variable nam

Command-Line
Interpretation (1)

• Single Commands
Command line has been read.

Its form iscmd arglist

fork()

wait(&status) exec(cmdarglist)

exit(status)

• This is like the top half of Fig 23.16 in
Bacon.

Command-Line
Interpretation (2)

Command line has been read.
cm1args1& cm2 args2

fork()

fork()

wait(&status)

wait(&status)

exec(cm2args2)
exit(status)

exit(status)

exec(cm1args1)
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Cmd-Line Interpretation
I/O Redirection

Command line has been read.
Its form iscmd arglist > file

fork()

wait(&status)

open(file);
make it std-out

exec(cmarglist)

exit(status)

• Justifies the fork primitive.

Cmd-Line Interpretation
PipelinesCommand is:

cm1 | cm2 create pipe

fork()

fork()

wait(&status)

wait(&status)

redirect i/p

exec(cm2) exit(status)

exit(status)

redirect o/p

exec(cm1)

close pipe

References
• "man pages" on a Unix system

Quite technical and long but authoritative.
You need to look at

– csh, sh.
– fork, exec, exit, wait.

• Books on Unix
Most books with Unix in title only address
the shell & applications, not system prog.
See books by Bourne & by Wang.
Read about:

– fork, exec, exit, wait.
– pipe (covered soon)
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The ADT, Semaphore
• Information Content

The state of a semaphore can be described
as:

a counter and
a queue of processes.

• The big idea
Semaphores provide a way of suspending
a process until it is safe for it to continue.

• For example
A semaphore can be used to achieve
mutual exclusion.

The Semaphore Operations
• Initialisation

init(S,J)

Initialises semaphore S;
(queue empty, counter val = J).

• Suspension
wait(S)

After decrementing counter,
if it is negative, suspend current
process and add it to queue of S ;

• Activation
signal(S)

Activate 1st process in queue
(if any); increment counter of S

Using Semaphores
• Mutual Exclusion

Making sure two processes don’t execute
critical code (of the same class) at the
same time.

• Synchronization

Making sure some activity of one process
is complete before some related activity of
another process.

• Resource control
Managing a homogeneous pool of
resources of some type. (It must not matter
to any process which of the items in the
pool is allocated to it.)

Semaphores for Mutual Exclusion
• Initialise Counter to 1 (Queue initially

empty)
• Entry protocol iswait (s)

Exit protocol issignal (s)

P1 P2

wait(s)

wait(s)
wait(s)

signal(s)

signal(s)

signal(s)

Using Semaphores for Synchronization
Suppose process P1 cannot execute code S1 until
process P2 has finished task T2.

• Initialise semaphore counter to 0. (Queue
initially empty)

• Before S1 in P1 place a
wait(s)

After T2 in P2 put a
signal(s)

P1 P2

wait(s) signal(s)

S1

T2

Using Semaphores for Rendezvous
Suppose neither process P1 nor process P2 can
proceed until each has reached a certain point in
their computations.

• Use two semaphores, S1 & S2

• Initialise semaphore counters to 0.
(Queues initially empty)

P1 P2

signal(s1) signal(s2)
wait(s2) wait(s1)

Control of Resources
Where there are multiple instances of a resource,
processes should be able to claim some,
. . . but only as many as exist.
• Examples

– Mag tape units
– Communications channels
– Processors
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– Network access to software
– Space

• The Solution
– Use a semaphore.
– If there aren units, initialise

semaphore ton
– Usewait to allocate, andsignal to

deallocate.
– Mutual exclusion is the case where

n=1.
Locks v. Semaphores

• Both can delimit critical code
• Operating System Dependencies

– Semaphores implemented using OS
process manager.

– Locks are independent of OS. Locks
involve busy-waiting and special
instructions.

• Efficiency Issues
– OS call is constant overhead

(semaphores)
– Busy-waiting is variable cost (locks).

Implementation of Semaphores (1)
• Considerations

– It is implemented in OS
– Primitive available for the

unconditional suspension of
processes -Block

– Can inhibit interrupts
– Must consider multiple processors

• Declarations

public class Semaphore

{

private int counter;

private ProcessQueue waiters;

private boolean mutex;

public Semaphore() {

<initialization (Queue etc)>

}

Implementation (2)
– Code forwait

public void wait() {

private Process p;

InhibitInterrupts();

lock(mutex);

counter = counter - 1;

if (counter < 0) {

p = <process doing wait>;

enter(p, waiters);

block(p); // block,

// enable interrupts

}

unlock(mutex);

EnableInterrupts();

}

Implementation (3)
• Code for signal

public void signal() {

<code for signal>

}

}

... is similar!
• Overkill?

Why protect the critical code in TWO
distinct ways?

Why Inhibit Interrupts?
• Achieve Mutual Exclusion

– It locks out other processes on the
same processor.

– There is no time-slicing when
interrupts disabled.

• Is there a problem?
– It only excludes processes on the

same processor.
– Another processor doing a signal or a

wait will execute this critical code.

Why Have a Lock?
• Achieve Mutual Exclusion

– It locks out other processes on other
processors.

• Is there a problem?
– It may not exclude other processes

on the same processor.
– Another process may start (or

resume) in response to an interrupt.
This 2nd process will sit and ‘spin’
for ever.

Producer-Consumer Problem (1)
• A Problem?

Not really; more a solution.
even an ADT.

Many systems have this pattern.
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Must know.

• Also Called Bounded Buffer Problem
It applies when there is a need to smooth
out bursts of activity.
Not about delivering fixed size blocks of
characters to devices.

Producer-Consumer (2)
• Template Description

Some processes produce items of some
given size. (Order does not matter.)
Some process consumes these items
asynchronously.
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Cyclic Buffers
• Data Structures

BUF[0..N-1] - The buffer
Count - Buffer occupancy
In - The index for insertion
Out - The index for extraction

• The movie
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Insertion Extraction

– Insertion operation (no concurrency)
BUF[In] = Item;
In = (In+1) % N;
Count = Count + 1;

– The extraction operation(also atomic)
Item2 = BUF[Out];
Out = (Out+1) % N;
Count = Count - 1;

One Producer & One Consumer (1)
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• Data Structures

BUF[0..N-1], In, Out as before.
Items - A semaphore initialised to 0.
Spaces - A semaphore initialised to N.

One Producer & One Consumer (2)
The METHODS

• The Insertion Operation

Spaces.wait();

BUF[In] = Item;

In = (In+1) % N;

Items.signal();

• The Extraction Operation
Items.wait();

Item2 = BUF[Out];

Out = (Out+1) % N;

Spaces.signal();

Multiple Producers & One Consumer (1)
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• Data Structures
BUF[0..N-1], In, Out as before.
Items - A semaphore initialised to 0.
Spaces - A semaphore initialised to N.
Guard - A semaphore initialised to 1.

Multiple Producers & One Consumer (2)
The METHODS

• The Insertion Operation

Spaces.wait();

Guard.wait();

BUF[In] = Item;

In = (In+1) % N;

Guard.signal();

Items.signal();

• The Extraction Operation

Items.wait();

Item2 = BUF[Out];

Out = (Out+1) % N;

Spaces.signal();

Readers & Writers
• Another ‘situation template’

– Shared manipulable resource
– Typically a data base
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– If not ‘being updated’ can be shared
(multiple readers)

– If being updated one process has
exclusive access

– Writers have priority
– Think file update

Readers & Writers Implementation
• Slide 10.11 in Bacon.
• Slides 10.8 - 10.10 in Bacon.

Implementing Semaphores Using Messages
(1)

• Assume Unix processes, pipes

– Semaphore process used
– Signal and wait done by messages
– Several processes can share a pipe

Client

Client

Client

Client

Semaphore

Single pipe for
requests

Multiple pipes for replies
(one per client)

Implementing Semaphores Using Messages
(2)

• Protocols

– Wait - client sends Wα
(whereα is client

id)

Sem process sends
reply

which client reads.
– Signal - client sends S

no reply needed

– Sem process maintains count; has list
of processes awaiting reply.

– Importance of pipe flushing.

• Non Unix systems

– Messages are usually higher level
– Replies may be mandatory
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UNIX File Descriptors
• What are they?

– Non-negative integers denoting open
I/O channel

– They index the current process’s File
Descriptor Table

– Associated with each process is an
FDT

0

1

2

3

4

0

1

2

3

4
5

6

– The indexes (0, 1, 2, . . . etc.) are file
descriptors.

– The corresponding table entries
mean something to the operating
system.

File Descriptors (ctd)
• Three channels are standard

stdin file descriptor 0
stdout file descriptor 1
stderr file descriptor 2

• Initially,
stdin keyboard

stdout current xterm window
stderr current xterm window

• FDT preserved acrossexec
• FDT copied duringfork

UNIX File Primitives
• Opening a file
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– First free entry in FDT chosen

• Closing a file

– Entry in FDT is marked free
– Opposite of open (above)

Redirecting I/O
• Redirecting output, say

– User cannot change FDT directly
– There is a primitivedup for this

purpose
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2222
3333

xterm outfile outfile

outfileoutfileoutfile

closeclose dup

UNIX Pipes (1)
Basics

• What we already know:
In the command

ps -axu | grep 666
– ps writes to stdout
– grep reads from stdin
– I/O has been redirected by the shell
– Shell doesn’t handle the characters

• Mental model

P1 P2

– It’s a buffer for characters
– Handled by I/O sub-system of Unix
– NB one-way, (but cf. Solaris

(two-way))

UNIX Pipes (2)
Dependencies

• Synchronization

P1 P2

– P2 will wait for production
– P1 will not wait for consumption
– There may also be buffering in P1

– The importance of timely flushing

Running a Shell as a Subprocess
• Can have a shell to do a job

– Unix allows easy creation of
subprocesses

– A subprocess can run a shell script
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• An easy-to-code method
inputStream Csh (cmd)

– cmd is shell code
– A process is created to run cmd
– Result is an input stream on which

output of cmd is delivered

• Task 2 of Lab 2 is like this

UNIX Pipes (3)
Creating pipes

• Opening a pipe
public void Pipe (FDPair pipeFDs)

TYPE FDPair:
0

1

– pipeFDs[0] set to file descriptor of
input end of pipe

– pipeFDs[1] set to file descriptor of
output end of pipe

– This is the result:

P

– This does not connect two processes.

Connecting Two
Processes by a Pipe

• Fork the process
Do it AFTER opening a pipe

P’

P

• Close unwanted descriptors

P’

P

UNIX Pipes (4)
Subprocess Pipelines

• Desired state:

parent

Pr Filt Co

childchildchild

• Make pipes (before forking);
• Fork three times;
• Close pipes in parent

Each child closes descriptors that it won’t
use.

• Each child does an exec if appropriate

UNIX Pipes (5)
Sharing Pipes

• Pipes can be shared

Pr1

Pr2

Co

child

child

child

• Integrity of messages

– Pipe is just a stream of chars.
– No interleaving BUT care required

with buffering.
– Messages less than 2K

References
• man Pages

– man page forpipe
– pages forread, write, close
– page forselect

• Books

– S. R. Bourne,
“The UNIX System”

– Paul Wang,
“An Introduction to Berkeley UNIX”
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Processes v. Threads
• Heavyweight Processes

– Each process has its own memory
space

– Co-operating processes can run on
separate computers

– Often separately compiled
– Maybe in different languages
– Typified by Unix processes

• Threads
(a.k.a. Lightweight Processes)

– They share (most of) their virtual
memory

– They have thesameglobal variables
and heap

– But have separate stacks, different
set of registers

– Part of the ‘same program’

Language Support
for Co-operating

Processes
• What is supported?

– Mutual exclusion:
Some languages have special syntax for
critical sections

– Synchronization:
Primitives for signalling.

• Advantages

– More reliable code
– More readable code
– Compiler checks on abuse of critical

sections

• Text Reference

– Bacon - Chapter 11
Language primitives for shared
memory

Special Syntax for
Critical Regions

• Shared variables identified
– Attribute sharedallowed for any data

item
– var A: shared array[1:n] of

CHAR

• Critical Sections
– Each critical section is tagged with

its sharedvariable
– region S1

begin

S1.stk[S1.ptr] := e;

S1.ptr := S1.ptr+1

end;

• The advantage
– The compiler can check that each

occurrence of asharedvariable
appears inside such a region.

Limitations of Critical Region Syntax
• The report card

– For simple mutual exclusion
problems it is great.

– . . . but in manycases it just doesn’t
help.

– So it gets an F.
• The problem area

– Sometimes a process should only do

the critical section if some predicate
holds . . .

– and the computation of the predicate
is critical code.

– The process should wait for
co-operation to make it true.

• Example
– Bounded buffer situation.

Conditional Critical Regions

• Allow temporary escapefrom a critical
section

– Sometimes critical code must wait
until conditions are right;

– e.g. wait for queue not empty or
buffer not full.

– Not always at start of section.
• Brinch Hansen’sawait primitive

– The first instance of CCR (1973)
– Syntax:

await (<bool

exprn>)

– Suspends the current process if
condition is falseand allows another
process into critical section.

Conditional Critical Regions Example

Readers and Writers:
This is Bacon Fig. 11.1
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region v do
begin

await aw=0;
rr:=rr+1
end

READ

region v do
begin

rr:=rr-1;
end

region v do
begin

aw:=aw+1;
await rr=0

end

region lockv do
begin

WRITE

end

region v do
begin

aw:=aw-1
end

Conditional Critical Regions Conclusions
• Compare last slide with the solution using

semaphores (9.28)
• Very natural, very general
• Implementation problems

– Would have to check all conditions
on every related assignment
statement.

• Condition variables
are less general but workable.

Monitors (1)
Motivation

• Shared variables and ADTs

– Each critical section is an operation
on shared resource

Global Shared Data

Process A: Process B:

Critical
Region 1

Critical
Region 2

– Why not group them modularly?

Monitors (2)
Motivation (ctd)

– Let us group them modularly.

Process A:

Process B:

ADT for shared data

Shared data

Operation 1

Operation 1

Operation 2

Operation 2

– When together, regions can be implicit
– This is the basic idea on which the concept

of monitor rests.

Monitors (3)
Description

• Definition
A monitor is an ADT with the property
that no two processes can beactively
computing in that ADT at the same time.

– Each operation is a critical section;
the controlled resource is the ADT.

• “ activelycomputing” ??
– While one process is actively

computing, others may be queued
waiting to start, . . .

– or queued waiting for a signal,
having temporarily escaped from
critical code.

Monitors (4)
The Primitives

• Condition variables
– The means of suspension is thewait

primitive; the means of arousal is a
signal from another process.

– Syntax:
WAIT(<condition-var-name>)

SIGNAL(<condition-var-name>)

• PAY ATTENTION TO THIS!
– DON’T confuse Monitorsignaland

wait with Semaphoresignaland
wait.

Monitors (5)
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Pattern of Usage
• Use of condition variables

Reference: This is Bacon Fig. 11.4

Monitor procedure

• Ensure mutual exclusion;

if not able to proceedthen

•WAIT(cond-var);

Operate on shared data;

Release mutual exclusion

• Point of potential delay

– Note: the WAIT releases the
exclusion on the monitor

Example 1
Single Resource Allocator

• Equivalent to a semaphore initialised to 1

private boolean busy = false;
private condition free;

public void reserve()
{

if (busy) {
WAIT(free);

}
busy = true;

}

public void release()
{

busy = false;
SIGNAL(free);

}

• Exercise: do the same for multiple
resources

Example 2
Bounded Buffer

• Reminder
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• The operations
– Insert: Put an object into the buffer,

except if it is full.
– Remove:Get the next object from

the buffer, except if the buffer is
empty

Example 2
Bounded Buffer (continued)

• The Code for the Monitor
public void Insert(item)
{

if (<buffer full>) {
notfull.wait();

}
<put item in buffer>;
notempty.signal();

}

public void Remove(item)
{

if (<buffer empty>) {

notempty.wait();
}
<get item from buffer>;
notfull.signal();

}

Example 3
Readers & Writers

• Declarations
private int rr,aw;
private boolean busy_writing;
private condition can_read, can_write;

• Readers
public void start_read()
{

if (aw > 0) {
can_read.wait();

}
rr = rr + 1;
can_read.signal();

}

public void end_read()
{

rr = rr - 1;
if (rr == 0) {

can_write.signal();
}

}

Example 3
(ctd)

• Writers
public void start_write()
{

aw = aw + 1;
if (busy_writing || (rr > 0)) {

can_write.wait();
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}
busy_writing = true;

}

public void end_write()
{

aw = aw - 1;
busy_writing = false;
if (aw > 0) {

can_write.signal();
} else {

can_read.signal();
}

}

• Reference
Bacon 11.2.3

Implementation
of Monitor wait (1)

• What happens in await?

– The process is suspended
unconditionally.

– The process is put on a condition
variable queue.

– It is regarded as not being in the
critical code. Another process
waiting for entry is allowed access.

Implementation
of Monitor wait (2)

• Bacon Fig. 11.5, in which we see process
A do a WAIT.

Operate on data

Operate on data

WAIT(cv1);

WAIT(cv2);

Condition
variables:
cv1, cv2

Shared
variables

A:

Q:

cv1: X Y A

cv2: P Q

Processes blocked on cv1

Processes blocked on cv2

Implementation
of Monitor signal (1)

• What happens at asignal?

– If the queue associated with the
condition variable is empty then
nothing!

– Otherwise, the first process on the
queue is made ready-to-run.

Implementation
of Monitor signal (2)

• Bacon Fig. 11.6, in whichB does a signal
and activatesX.

Operate on data

Operate on data

WAIT(cv1);

Signal(cv1);

Condition
variables:
cv1, cv2

Shared
variables

X:

B:

cv1: X Y A

I K

Monitors - Discussion

• Mutual Exclusion
Effective but a blunt tool; every procedure
provides mutual exclusion for ALL data in
the module.

• Mesa solution
In Mesa mutual exclusion done on a ‘per
procedure basis’.

• Synchronization
Some other constructs are more efficient.

Comparison of Sync. & Mutex. Primitives

• Three are Very Important
– Locks, Semaphores & Monitors
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Locks Semaphores Monitors

Level Low Low High

Environ-
ment

Machine
level

Operating
System

High Level
Language

Cost Busy-
waiting

Constant
Overhead

Constant
Overhead

• You may never see:
– Conditional Critical Regions

• There are others!
– Event Counters
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Modules

• Essence
– Separate compilation
– Information hiding

• Advantages
– Complexity control
– Reusability
– Team programming
– Maintainability

• Bacon’s Diagrams

In
te

rf
ac

e

Interface
Procedure

Interface
Procedure

Interface
Procedure

Internal
Procedures

Data

Module

ADTs and Objects

• Essence
– Data encapsulation.
– Semantics captured in axioms.
– Enable separation of

the Implementationfrom the
Specification.

– ADTs exemplified in Modula-2.
– Objects exemplified in Eiffel

• Bacon’s Diagrams

In
te

rf
ac

e

Operation

Operation

Operation

Internal
Procedures

Data

Instances

ADT

JAVA
Thumbnail Sketch

• What is Java?
A simple, object-oriented, distributed,
interpreted, robust, secure, architecture
neutral, portable, high-performance,
multi-threaded and dynamic language.

Several Examples
• Taken from Deitel & Deitel,

Java - How to Program

– Focus is on concurrency.
– Comments are about all aspects of

Java, but . . .
– Not a comprehensive intro.
– See the list of books on the

COMP2310 web page. Any one will
explain details.

D & D Example 1 (1)
• 3 Processes - each sleeps a while then

prints.
public class PrintTest {

public static void main(String args[])
{

PrintThread thread1,thread2,thread3;
thread1 = new PrintThread( "1" );

thread2 = new PrintThread( "2" );
thread3 = new PrintThread( "3" );
thread1.start();
thread2.start();
thread3.start();

}

• Output:

Name: 1; sleep: 4297
Name: 2; sleep: 672
Name: 3; sleep: 27
Thread 3
Thread 2
Thread 1

Example 1 (2)
• Notes on the main program:

– Every program has a main method,
calledmain

– Invariably the main method has
params:String args[]

– This program has 2 classes:
PrintTest andPrintThread

– Objectthread1 is declaredin
PrintThread thread1, . . .

– thread1 is createdby doing
thread1=new PrintThread("1")

– thread1 is executedby
thread1.start();

– start is a inherited by
PrintThread from Thread

Example 1 (3)
• The PrintThread Class:
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- Declarations & constructor
class PrintThread extends Thread {

int sleepTime;

public PrintThread( String id ) {
super( id );

// sleep between 0 and 5 seconds
sleepTime = (int) (Math.random()*5000);

System.out.println( "Name:"+getName()
+ "; sleep: "+sleepTime );

• Notes:
– PrintThread is a subclass ofThread -

it inherits.
– Each instance ofPrintThread has its

own sleepTime
– The param,id, to constructor

PrintThread is its name
– super(id) assigns name to thread by

calling constructor,Thread(id), in
superclass

Example 1 (4)
• PrintThread Class (ctd):

- The run method
public void run()
{

// put thread to sleep for random interval
try {

sleep( sleepTime );
}
catch ( InterruptedException exception ) {

System.err.println( "Exception: " +
exception.toString() );

}
// print thread name

System.out.println("Thread " + getName());
}

• Notes:

– run() is a invoked bystart()
– Every thread needs arun()
– The construction:

try {S } catch (E ) {H }
allows for exceptionE in codeS to be
handled by codeH.

D&D Example 2 (1)
• 1 Producer and 1 Consumer sharing a

cell.

// Shows multiple threads modifying a
// shared object.

public class SharedCell {
public static void main( String args[] ) {

HoldInteger h = new HoldInteger();
ProduceInteger p = new ProduceInteger(h);
ConsumeInteger c = new ConsumeInteger(h);

p.start();
c.start();

}
}

• The main program

– Probably in its own file
– Depends on classes HoldInteger,

ProduceInteger & ConsumeInteger
– Declaration & creation of objects done

together here.
– HoldInteger h = new

HoldInteger();
is equivalent to

HoldInteger h; h = new
HoldInteger();

Example 2 (2)
class HoldInteger {

private int sharedInt;

public void setSharedInt(int val) {
sharedInt = val;

}

public int getSharedInt() {
return sharedInt;

}
}

• Context:

ProduceInteger: SharedCell: ConsumeInteger:

Producer

One-cell
Buffer

Consumer

• Note:
– Use ofpublic andprivate

Example 2 (3)
class ProduceInteger extends Thread {

private HoldInteger pHold;

public ProduceInteger( HoldInteger h )
{

pHold = h;
}

public void run()
{

for ( int count = 0; count < 10; count++ ) {
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pHold.setSharedInt( count );
System.out.println(

"Producer set sharedInt to " + count );

// sleep for a random interval
try {

sleep( (int) ( Math.random() * 3000 ) );
}
catch( InterruptedException e ) {

System.err.println( "Exception "
+ e.toString() );

}
}

}
}

Example 2 (4)
class ConsumeInteger extends Thread {

private HoldInteger cHold;

public ConsumeInteger( HoldInteger h )
{ cHold = h; }

public void run()
{

int val;
val = cHold.getSharedInt();
System.out.println(

"Consumer retrieved " + val );

while ( val != 9 ) {
// sleep for a random interval
try {

sleep( (int) (Math.random() * 3000 ));
}
catch( InterruptedException e ) {

System.err.println(

"Exception " + e.toString() );
}
val = cHold.getSharedInt();
System.out.println(

"Consumer retrieved " + val );
}

} }

Example 2 (5)
The Output

Producer set sharedInt to 0
Consumer retrieved 0
Producer set sharedInt to 1
Consumer retrieved 1
Producer set sharedInt to 2
Producer set sharedInt to 3
Consumer retrieved 3
Producer set sharedInt to 4
Producer set sharedInt to 5
Consumer retrieved 5
Consumer retrieved 5
Producer set sharedInt to 6
Consumer retrieved 6
Consumer retrieved 6
Producer set sharedInt to 7
Producer set sharedInt to 8
Producer set sharedInt to 9
Consumer retrieved 9

• Theproblem is that actionssetSharedInt&
GetSharedInt are not forced to take turns.

D & D Example 3 (1)
// Fig. 13.5: SharedCell.java

// Show multiple threads modifying shared
// object. Use synchronization to ensure
// that both threads access the shared
// cell properly.

public class SharedCell {
public static void main( String args[] )
{

HoldInteger h = new HoldInteger();
ProduceInteger p = new ProduceInteger(h);
ConsumeInteger c = new ConsumeInteger(h);

p.start();
c.start();

}
}

• Class ProduceInteger as above:
• Class ConsumeInteger as above:

Example 3 (2)
class HoldInteger {

private int sharedInt;
private boolean writeable = true;

public synchronized
void setSharedInt(int val) {

while ( !writeable ) {
try { wait(); }
catch ( InterruptedException e ) {

System.err.println(
"Exception: " + e.toString());

}
}
sharedInt = val; writeable = false;
notify();

}
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SetSharedInt

GetSharedInt

SharedInt

SharedInt

Writeable

Writeable

1 1

2 2

ClassHoldInteger is a monitor

Example 3 (3)
public synchronized int getSharedInt() {

while ( writeable ) {
try {

wait();
}
catch ( InterruptedException e ) {

System.err.println(
"Exception: " + e.toString() );

}
}

writeable = true; notify();
return sharedInt;

}

}

Heavyweight Processes
in Java

• Relevant classes are
java.lang.Process
java.lang.Runtime

• Process Creation:

– Done by one of four forms ofexec
from Runtime

– exectakes aString param
– the executable of the program to

be executed

– and its parameters.
public Process exec(String

cmd) throws IOException

– Another version takes an array of
String parameters.

Use of exec - Example
• Three step recipe

– Get an instance of the runtime class
object:

rt =

Runtime.getRuntime();

– Compute the command to be
executed as a string:

cmd = "ls -als

Java-1.1.5";

– Execute the process (which produces
a listing of the Java 1.1.5 directory):

proc = rt.exec(cmd);

– This process is an object, with
methods.

• Not UNIX-specific!

Normal Process Termination
• Awaiting process completion

– This is done using
int waitFor() from Process

• Exit value of a process
– Normal completion gives exit value

of 0.
– Process can choose to give a nonzero

exit value.
System.exit(status)

– Can be discovered using

int exitValue() from Process
• Preparation

– Should stop all threads first.

Termination with Prejudice

• Murder!
– This is done using

public abstract void

destroy()

from classProcess
– destroy() does nothing if the

process has finished.
• Don’t rely on GC

– Garbage collection does not kill
processes

• All above methods apply toProcess
instances.

Pipes

• Process I/O assumptions
– It is expected a process that comes

from anexechas astdin, stdout &
stderr

• Getting at these channels

– Write to the standard input of the
exec’ed process using
OutputStream
getOutputStream() from Process.

– Read from standard output of the
exec’ed process using
InputStream getInputStream()

from Process.
– Ditto standard error.
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The Class Runtime
• We have seenexec
• Memory

– Can discover how much is free and
what the total amount is.

• Explicit prompt to gc
• Loading libraries

– Loads dynamic library whose name
is given by default or as a parameter.

– Often the dynamic libraries contain
native methods.

• Tracing
– Both instructions & method calls can

be traced.

Summary
• Java Allows Concurrency

– Both as threads and heavyweight
processes

• Threads
– Allows priority scheduling.
– Has monitors.

• Processes
– Similar to Unix processes.

(. . . but does not clone)
– Provides pipes to stdin and stdout of

spawned process.
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Operating Systems
Virtual Machinery

• Reference
– Bacon, Chapter 2, esp. 2.3–2.6

• OS as an Abstract Machine

Application

Java
Interpreter

Operating
System

Hardware

• Operating System Functions
– To manage resources
∗ protection

– To provide services
∗ to users
∗ applications
∗ internally

Virtual Computers
Bacon Slides

• Figure 2.12
Contrasts user view of machine with
reality in architecture.

• Figure 2.13
Bacon’s slide of typical closed operating
system.

Operating Systems
Structure (1)

• The Bacon view
– Compare with figure 2.13

File System

I/O Manager

Disc
Driver

Terminal
Driver

Process
Manager

Memory
Manager

Network
Comms.
Service

Network
Driver

• A problem
Bacon is stuck with being general so
cannot commit to showing as much
layering as is possible/desirable.

Operating Systems
Structure (2)

• The Comer View - XINU
– Structure as on PDP11
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User programs

File System

Process
Coordination

Process
Manager

Memory Manager

Hardware

yet
more layers

• Structure on Intel architecture is a little
different.

OS Structure (3)

• The Tanenbaum View - MINIX

Init
user

process
user

process
user

process

Memory
Management

File
System

disk
task

tty
task

clock
task

system
task

Process Management

OS

– Distribution possible!
File system can be on a separate
machine

– User can only talk to memory
manager or file system.

OS Structure (4)
Micro-kernels

• The aim
– Make ‘privileged OS’ as small as

possible
– As much functionality as possible at

‘user level’
– Compromise between efficiency and

flexibility.
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ApplicationApplication

Java
Interpreter C-Shell

OS Services written
at user level

Process
Manager

Memory
Manager

Network
Manager

Hardware

OS

kernel

OS Structure (5)
Micro-kernels (ctd)

• The advantages

– Small kernel easier to build and
maintain

– Services above kernel easier to build,
maintain and change

– Kernel optimized for speed
– User level of OS can be optimized

for space
– OS policy is at user level and thus

flexible
– System configuration can be tailored

Operating Systems
Device Management (1)

• Bacon, Chapter 3
• The cast in the I/O story

User
Level

OS
Level

H/W
Level

User program, languageL

I/O library for L

I/O System, File System

Device driver
- upper half

Device driver
- upper half

Device driver
- lower half

Device driver
- lower half

Disk interface
(card)

Device Management (2)
Driver Structure

• The two-halves structure

Device driver
- upper half

Device driver
- lower half

• Upper half is synchronous
Lower half is interrupt driven

• Each half communicates with the other by
shared memory and by semaphores.

• Each half may need towait on the other;
each cansignal the other

Device Management (3)
Driver Examples

• Terminal Input:

– Upper half:
getcharreturns when char is there.
(use of semaphore)

– Lower half:
activated by external events; handles
cooked mode.

• Terminal Output:

– Upper half:
putcharreturns if space is there.
(use of semaphore)

– Lower half:
activated by device-ready interrupt;

• Disk I/O:

– Upper half:
Block supplied to be read/written

– Lower half:
disk head scheduling

Interrupts

• See section 3.2 of Bacon
• What happens
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Interrupt
service routine

Process in
execution
– Processor status saved

(PC, PSW, few regs)
– PC set to address of the interrupt

service routine appropriate to
interrupt

– PSW set appropriately
Privileged mode on?
Interrupts disabled?

Interrupt Processing
• Corresponds to Bacon fig. 3.5a

β

table of
interrupt
vectors

stack

interrupt
service
routine

process
code

PSW α PC

MEMORY

PROCESSOR

Interrupt about to occur

Interrupt Processing
• Corresponds to Bacon fig. 3.5b

β

table of
interrupt
vectors

stack

interrupt
service
routine

process
code

PSW β PC

MEMORY

PROCESSOR

α

Interrupt has just occurred

Interrupts and
Device Management

(Bacon Slides)
• Figure 3.9 of Bacon

– MC68000 Interrupt vectors
• Figure 3.3a of Bacon

– Polled interface
• Figure 3.3b of Bacon

– Interrupt driven interface

Communications Management

Virtual vs Real

• See sections 3.6, 3.7 of Bacon
– High level protocol for easy

communications at application level.
(m/c = machine)

M/cM/c
data

transmission

– Low level protocol is needed for
implementation on actual
communication medium.

M/c M/c

InterfaceInterface

s/w protocol

h/w protocol
Physical
Network
Medium

Medium Access

Media (1a)
RS-232C

• Computer-computer connection
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BUS

CPU MEMORY I/O
CARD

COMPUTER 1
UART

RS-232
Modem

RS-232
I/O

CARD

COMPUTER 2

TELEPHONE

Media (1b)
RS-232C

• Bus is bit parallel, dozens of wires
• RS-232 is bit-serial, several wires
• Telephone is modulated bit serial
• UART = Universal Asynchronous

Receiver-Transmitter
• Reference: Tanenbaum

Media (2)
Ethernet

• Network connection
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CPU MEM.
EC

EC=Ethernet Card

The Ether

• The ether is coaxial cable

– Frequency is of order of 10 MHz.
– Cable is a transmission line.

• Packets 64–1518 bytes

– Header, sumchecks give minimum
packet size.

Media (3)
CSMA/CD

• Carrier Sense, Multiple Accesswith
Collision Detection

– CarrierSense means that a
transmitter checks that ‘the ether is
quiet’ before sending

– Multiple Access means any station
can talk to any other

– Collision Detection means
transmitter receives and checks its
own signal.

– Repeat collision unlikely because of
random, exponentially-increasing
backoff before retransmission.

Media (4)

Ethernet Length
• Cable has limited length

– Transmission speed is approx.
speed-of-light

Trans 1 Intended Receivers Trans 2

• Limiting Case
– Max length is a few km

250 bit ∗ 200 000 km.s−1

2 ∗ 10 000 000 bit.s−1

Media (5)
Token Rings

• FDDI
– Fibre Distributed Data Interface
– 100 Mb.s−1

• Cambridge Ring etc.
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Media (6)

38



Token Rings (ctd)
• Typical setup

– Source awaits empty car;
Loads car and raises flag;

- car is now occupied.
– Destination station reads car

contents;
Marks message as received.

– Source station sees that car and
marks it empty;
Does not re-use it.

• Upper level duties
– Small blocks from large.

Media (7)
LAN Comparisons

Ethernet 10 Mb.s−1

IEEE 802.4 token bus 10 Mb.s−1

FDDI token ring 100 Mb.s−1

Cambridge Ring 10 Mb.s−1

Cambridge Fast Ring 100 Mb.s−1

Cambridge Backbone Ring 1000 Mb.s−1

ISO/OSI Reference Model (1)
• Reference: Bacon, section 3.8
• Open Systems Interconnection

– framework for discussion and
comparison.

End SystemEnd System

Network Node

ApplicationApplication
PresentationPresentation

SessionSession
TransportTransport

Network NetworkNetwork
Data LinkData LinkData Link
PhysicalPhysicalPhysical

ISO/OSI Reference Model (2)
• Physical layer / Data link layer

– bits over medium between 2
computers, error free

• Network layer / Transport layer
– packets over a route, standard service

• Session layer
– client level access

• Presentation layer
– provides independence of

representation

Memory Management
• See Chapter 6 of Bacon
• Memory Hierarchy

– Registers, cache, main memory, disk
storage

• Address Space
– MMUs and dynamic relocation
– Virtual memory

• Protection
• Segmentation

– Sharing

• Paging
– Page tables
– Page replacement policies &

hardware

File Management
• See Chapter 7 of Bacon
• Functions of File Manager

– Secure information storage
(Protection against malice and
misadventure)

– Directory service (Organisation!)
• Sharing
• Networked file systems
• Memory mapped files
• Persistence

Process Management (1)
Processes & Design

• Reference: Bacon, Chapter 4
• Whereshouldprocesses be used?

– With multiple processors
– With asynchronous components
– For independent tasks

• Processes and virtual machines
– Each process a separate machine?

- Can view it that way
– Processes can be hidden

Process Management (2)
Requirements

• OS must support several fictions

– Separationwhere the hardware is
shared
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– Sharingwhere the hardware is
separate

• Process should be an ADT
with the following operations :

– Create, Kill
– Suspend, Run
– Communication operations.

Process Management (3)
Process Descriptors

• Main use is for state-saving

Process
Descriptor

Process ID

Process State

Saved PSW

Saved SP

Saved Registers

Cause of Wait

Swap Address

Various times

Queues Link

File Desc. Table

Other stuff

• What is process state?
– Enumerated type

(running, ready, blocked)
– . . . or something more elaborate

Process Management (4)

State Transition Diagrams

• They show which process state transitions
are sensible.

Running

Running Blocked

Runnable

Runnable

I/O Wait

Sem Wait

Sleep(n)

Program
action

scheduling event
occurs

Process Management (5)
Queue of Process

• Processes in a queue are linked through
the process table. Only 1 linkage cell is
needed for various queues.
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HD TL

P3

P7

P9

Three
processes
in a queue.

Process
Table
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CSP
Communicating Sequential

Processes
• Just a Language Fragment?

– Assignments, sequencing
– Conditionals and loops,
• Dijkstra style

– Processes and families of processes
– Uniform Input/Output

• Influence of CSP
– Straight implementations
– Occam
– Ada

CSP
Introduction

• Lasting Concepts
– Unification of process

communication and I/O
– Nondeterministic choice among

possible inputs
– Distributed termination

• Supplied Reference
– C.A.R. (Tony) Hoare,

Communicating Sequential
Processes,
- Communications of A.C.M.,
August, 1978.

Conventional Conditionals
• Conventional Conditionals.

if (x==y) {
flag = true;

}

if (a>b) {
max = a;

} else {
max = b;

}

switch (col) {
case red:

stop();
break;

case orange:
accelerate();
break;

case green:
go();

}

Dijkstra-Style Conditionals

• Guarded Commands
[ x=y → flag := true]

[

a > b → max := a []
a ≤ b → max := b ]

[

col=red −→ stop() []
col=amber −→ accelerate() []
col=green −→ go() ]

Syntax Of Guarded Alternatives

• Possible CSP Statement is:

[

g1 → S1 []
g2 → S2 []
....

gn → Sn ]

– Eachgj is a boolean expression.
EachSj is a statement.

• Terminology
– gi→ Si is called a

Guarded command
– Guard (gi) is a condition that must

hold before command (Si) executed

Semantics of Guarded
Alternatives

[ g1 → S1 []
g2 → S2 []
....

gn → Sn ]

• If no guard is true the alternative statement
fails
• Otherwise, one of the guarded commands

with true guard is chosen and executed
• Yes, there isNondeterminism!
• e.g.

[

a ≥ b → max := a []
a ≤ b → max := b ]

Guarded Command Repetition (1)
• Conventional Constructs

while (i <= n) {

sum = sum + f(i);
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i = i+1;

}

• Dijkstra-Style Repetition
*[

i ≤ n → sum := sum + f(i);

i := i+1 ]

• Syntax
*[ g1 → S1 []

....

gn → Sn ]

Guarded Command
Repetition (2)

• Semantics
– On each iteration, one of the guarded

commands with true guard is
executed.

– The choice is made
non-deterministically

– Repetition continues until all guards
false

More Examples (1)
• Factorial

i := 2; fac := 1;

*[ i <= n →
fac := fac * i;

i := i+1 ]

– Computes the factorial ofn in
variablefac

– Suppose n = 4;
wheni is 2, 3 & 4 fac is updated and
i is incremented.

More Examples (2)
• Greatest Common Divisor

x := a; y := b;

*[

x < y → y := y-x []
y < x → x := x-y ];

gcd := x;

– Computes the gcd of non-negative
integers,a & b, in variablegcd

– Exit conditionx=y

– This is Euclid’s Algorithm

Input and Output Commands (1)
• Syntax

– input command:
process_name? target_variable

– output command:
process_name! expression

• Examples

cardreader ? cardimage

lineprinter ! lineimage

File(i) ? c

Q ? x

P ! (y+2)

Input and Output Commands (2)
• Rendezvous (handshake)

– If Q ? x is a command in P and

P ! (y+2) is a command in Q then P
and Q can rendezvous & exchange
data.

– If it happens, then x is set to the
value of y+2

– No buffering

Input Commands as Guards

• Example:
i ≤ n; j: integer; X?j

→ k:integer;

X?k; Z!(j+k)

– The guard consists of a boolean
expression, a declaration and an
input command.

– So, what is the general form for a
guard?

Complete Syntax of Guards

• Full Syntax of Guards

<guard> ::= <guard list> |
<guard list> <input cmd> |
<input cmd>

<guard list> ::= <guard elt> {; <guard elt>}
<guard elt> ::= <bool expr> | <declaration>
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Guard

Declaration ;

Boolean
exprn. Input

command

Inputs in Guards:
The Semantics

• Evaluation of Guards

– The semicolon acts asand
– Declarations evaluate true
– Boolean expressions evaluate

normally
– Supposing an input command is P?v.

It will be deemed:

∗ true, if P is waiting to make a
rendezvous

∗ false, if P has terminated already
∗ pending, otherwise

• That Example, again:
i ≤ n; j: integer; X?j

→ k:integer;

X?k; Z!(j+k)

– If i≤n then this guard can be selected
whenX tries to send an integer to
this process. Then X?j is executed.

CSP Example 1

‘Copy’
X:: *[c:character; west?c

→ east!c ];

west X east

• X terminates when west terminates
• This is called distributed termination
• X fails if east terminates before west
• X acts as a buffer

Example 2
‘Collect’

X2:: c: character;

*[

A?c → consumer!c []
B?c → consumer!c ] ;

A

B

X2 consumer

• X2 terminates when A and B both
terminate

• communication with A and B can
interleave arbitrarily.

• This is where the non-deterministic choice
wins.

Example 3

‘Squash’
• A program which copies its input,

replacing each pair of asterisks by an up
arrow.

X::

*[

c: character; west?c →
[ c 6= asterisk → east!c []

c = asterisk → west?c;

[ c 6= asterisk

→ east!asterisk; east!c []
c = asterisk → east!uparrow

] ] ]

west X east

x**2 + c*y**2 ⇒ x↑2 + c*y↑2
• We assume the input does not end with an

asterisk.

Example 4
‘Disassemble’

• A program which extracts the stream of
characters contained on a file of cards.

west::

*[

cardimage: (1..80) char;

cardfile?cardimage →
i: int; i:= 1;

*[ i ≤ 80 →
X!cardimage(i); i := i+1];

X!space
]

43



• Assemble

– Stream of characters to lineprinter of
width 125.

Example 5
Conway’s Problem

[west:: Disassemble ||

X:: Squash ||

east:: Assemble ]

west X east

cardfile line printer

Disassemble Squash Assemble

• Hard to do elegantly in other languages

Example 6
Division

DIV::

*[x,y: integer; X?(x,y) →
quot: integer; quot := 0;

rem: integer; rem := x;

*[rem ≤ y → rem := rem - y;

quot := quot+1];

X!(quot,rem) ];

X

DIV

(x,y) (quot,rem)

– Gives both quotient and remainder as
results.

– Closest thing to a procedure in CSP

Example 7
‘Factorial’ (a)

fac(i:1..limit) ::

*[

n: integer; fac(i-1)?n →
[ n=0 → fac(i-1)!1 []

n>0 → fac(i+1)!(n-1);

r:integer; fac(i+1)?r;

fac(i-1)!(n*r) ]];

– This is code for a family
fac(1), fac(2), ... fac(limit)

“Parent” Same code

fac0 fac1 fac2 fac3

Factorial (b)
• One of the family

fac(4) ::

*[

n:integer; fac(3)?n →
[ n=0 → fac(3)!1 []

n>0 → fac(5)!(n-1);

r:integer; fac(5)?r;

fac(3)!(n*r) ]];

• The nature of process arrays

– Note that in fac(i) the subscript is not

a variable. It only has a role at
compile time.

Factorial in Action (a)
• Factorial of 0

– fac(0) sends 0 to fac(1)

0

1
fac0 fac1 fac2 fac3

fac(1) ::

*[

n: integer; fac(0)?n →
[ n=0 → fac(0)!1 []

n>0 → fac(2)!(n-1);

r:integer; fac(2)?r;

fac(0)!(n*r) ]];

Factorial in Action (b)
• Factorial of 4

4 3 2 1

12624
fac0 fac1 fac2 fac3

fac(1) ::

*[

n: integer; fac(0)?n →
[n=0 → fac(0)!1 []

n>0 → fac(2)!(n-1);

r:integer; fac(2)?r;

fac(0)!(n*r)]];

– When fac(1) sends 3 to fac(2) it ultimately
gets back 6
(the factorial of 3).
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– It then can return 4*6 to fac(0).

Types in CSP
• Primitive Types

– integer 666
– character ’A’
– real

3.14159
• Structured Types

– Arrays (0..99)
integer

– Pairs (4,y)
– Constructor applied to arguments.

Cons(true,y)
• Structured Values

– An expression of structured type that
contains no vars.
List(4,nil)
List(2,List(4,nil))

• Structured Targets
– An expression of structured type that

contains no vars.
(x,y)
List(a,List(b,nil))

Assignments
• Can have a structured value assigned to a

structured target.

(x,y) := (2,3)

Same as x:= 2; y:=3
(x,y) := (y,x)

Swaps values of x, y
has(x,y) := has(2,3)

Same as x:= 2; y:=3
C(x,y) := C(y,x)

Swaps values of x, y
List(a,List(b,nil)) :=

List(2,List(4,nil))

• Can have a structured value assigned to a
less structured target.
List(a,List(b,nil)) := List(2,c)

• Assignment compatibility!

Multiple Channels
• Can have a structured value sent from an

output.
• Can have a structured target mentioned in

an input command.
P?has(x,y) in Q can rendezvous with
Q!has(2,3) in P.
P?has(x,y) in Q can’t rendezvous with
Q!(2,3) in P.

• This allows multiple channels between
two processes.

Example 8
Table Lookup

S ::
content: (0..99) int, size: int;
size:=0;

*[n: int; X?has(n) → SEARCH;X!(i<size) []
n: int; X?insert(n) → SEARCH;

[i<size → skip []
i=size; size<100 →

content(size) := n;
size := size+1;

] ]
SEARCH is an abbreviation for

i: int; i:=0;
*[ i_size; content(i) 6= n → i :=

i+1 ]

23 12 18 14 27 31 26 00

content:

size=7

Example 9
Parallel Sets

• Exercise:

Read and understand the section 4.5 in the
CSP paper.

• Consider membership tests:

12 14 18 23

has(18) true

S0

S1 S2 S3 S4

• .. and insertions:

26 31 0insert(29)

S6 S7 S8
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Eventcount,
An abstract Data Type

• Reed and Kanodza, CACM 22(2),
February 1979, 115–123

• Information Content
The state of an eventcount is captured as:

– A counter
– a queue of processes

• The Operations
advance(E) Increment counter of the

eventcountE and return
the new value ofE.

await(E,n) Suspend the current
process until the counter
of eventcount E is
greater than or equal to
n.

read(E) Return value of counter
of E.

No need for initialisation;
Counter always starts at 0.

Eventcounts
Uses

• Mutual Exclusion

– In conjuction with sequencers (see
below)

• Synchronisation

– Standard scheme follows

• Resource Control
– Such as in bounded buffer scheme

• Similar scope to semaphores

Using Eventcounts

for Synchronization
• Consider:

while (true) { for (i=1;i<=infinity;i++) {
produce(); await(eventA,i);
advance(eventA); consume();

} }

• This pattern ensures
– produce2 happens before consume2

– producej happens before consumej

Using Eventcounts
for Rendezvous

• Consider:

for (j=1;j<=infinity;j++) { for (i=1;i<=infinity;i++) {
head_of_cycle(); head_of_cycle();

advance(eventB); advance(eventA);
await(eventA,j); await(eventB,i);

tail_of_cycle(); tail_of_cycle();
} }

The Abstract Data Type,
Sequencer

• Information Content
The state of a sequencer is captured as: a
counter.

• The Operation
ticket(S) Return the value of the

counter of sequencerS
and increment it.

• The Idea
– The operationticket is just like

taking a number when queueing for
service (in a deli or shoe store etc.)

– Sequencer counters are initialised to
0.

– Invariably used in conjunction with
eventcounts.

– A sequencer plus an eventcount is
the deli system.

Using Eventcounts
for

Mutual Exclusion
• Use an event count and a sequencer,e & s,

both initialised to 0.
• Entry protocol is

await (e, ticket(s))
• Exit protocol is

advance(e)

P1 P2

await(e,ticket(s))

await(e,ticket(s))
await(e,ticket(s))

advance(e)

advance(e)

advance(e)

The Producer-Consumer Problem
• Recap
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• Data Structures
BUF[0..N-1] the buffer, as before
IN, OUT Eventcounts initialised to 0.
P, C Sequencers for production & consumption.

• Operations

– Insertion operation

j = ticket(P);
await(OUT, j-N+1);

BUF[j % N] = Item;
advance(IN);

– Extraction operation

k = ticket(C);
await(IN, k+1);

Item2 = BUF[k % N];
advance(OUT);

Multiple Producers & Multiple Consumers
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• Data Structures
As above.

• Insertion operation

j = ticket(P);
await(IN, j);
await(OUT, j-N+1);

BUF[j % N] = Item;
advance(IN);

• Extraction operation

k = ticket(C);
await(OUT, k);
await(IN, k+1);

Item2 = BUF[k % N];
advance(OUT);
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What is a distributed system?
• Many types of jobs may be broken up into

processesthat get the job done.
• Each process may be worked on by a

separateprocessor.
• Multiple processors may co-operate on a

single job.
• If processors communicate results to each

other, then we have adistributed system.
• Examples: a multi-computer, a computer

network, or a network of people.

Why have distributed systems?
Resource sharing: access to (possibly remote)

hardware devices and data, no matter
where you are.

Openness:key interfaces are published, so you
can construct a system with heterogeneous
hardware and software.

Scalability: the system has to grow in an ordered
way.

Fault tolerance: coping with hardware or soft-
ware failure.

Transparency: hide the separation of compo-
nents, so the system can be perceived as a
whole.

What this section is about
How to understand, design, and build distributed
systems.
• concepts and abstractions
• what makes a good distributed system
• how they can fail
• design choices

• language support for distributed processing
(C/UNIX and Java)

• tools to help you to build distributed
systems

• how to diagnose problems and fix them
Some basic issues

• How to declare concurrency.
• How to synchronize processors.
• How to communicate ‘results’.
• How to preventprocessing or communica-

tion errors.
• How to recoverfrom them.
• How best todistributetheworkload.

Systems we can study
• Message Passing Interface (MPI)
• Sockets and XTI
• Ada, occam, Linda
• RPC, RMI, CORBA, DCOM, . . .
• Anything else?

Inter-Process-Communication
• References for today: Bacon, chapters

12–13; Ben-Ari, chapters 7–10
• Ada: Programming in Ada& Program-

ming in Ada 95, J. G. P. Barnes, Addison-
Wesley

• occam and Linda: see Bacon & Ben-Ari
for other references

Where have we been?
• Processes:

– heavyweight (UNIX):fork, exec,
wait

– lightweight (Java threads):new

Thread, start, wait, notify

– CSP (rendezvous)
– interrupts

• Resources:CPUs, files, printers, memory,
etc.:

– producers/consumers; buffers
(reader/writer)

– changing/borrowing/sharing
• Mutual exclusion:critical sections
• Semaphores, monitors, locks (Java

synchronized methods)

Evolution of interprocess communication
primitives (1)

(see Bacon, Figure 12.1)
Given: Low-level primitives: Synchronization
through event signals or semaphores
Where do we go from here?
Two approaches:
(a) Shared memory
Hide the low-level primitives and enforce
structuring:
• Critical regions
• Monitors
• Rendezvous

Evolution of interprocess communication
primitives (2)

(b) No shared memory
Make the primitives more powerful—
combine data transfer and synchronization:

• Message passing
• Pipes
• Sockets

46



• Streams
• Remote procedure call

To share, or not to share?
• Systems that share memory can simulate

systems that don’t.
• Systems that don’t share memory can

simulate systems that do.
• Shared memory systems and non-shared

memory systems areequally powerful
. . . but not alwaysequally desirableto a
software engineer!

When to share
(Bacon, §12.5)

• Systems where memory is not well pro-
tected, e.g. PCs with 80286 and earlier.
All processes – and the OS – run in a
single shared address space (or use ‘real’
addresses)

• The language’s runtime system functions
as a simple operating system, e.g. embed-
ded and real-time systems.

• A particular program might run on one
processor or on a shared-memory mul-
tiprocessor, and may have different be-
haviour/performance characteristics: be
careful!

When not to share
(Bacon, §12.6)

• Protected systems, e.g. multi-user systems,
where each process runs in its own separate
address space.

• Processes run on different computers, e.g.
across a local network.

• Systems where you want the freedom to
change where processes start executing.

• Systems which migrate processes to
achieve load balancing.

Choosing primitives: synchronous or
asynchronous?

• Synchronous:participation of sender and
receiver; blocking;rendezvous

• Asynchronous:non-blocking, check for
message, or interrupt

• The difference: buffering.
• Compare the telephone system and the

postal system.
• Unbuffered synchronous: the lower-level

concept: occam and Ada.
• Buffered asynchronous: higher level but

less efficient: Linda.

Choosing primitives: process identification
• Direct connections, a switching system

(telephone exchange), or a bulletin board?

occam Dedicated channels connecting pairs of
processes; the most efficient.

Ada A process calls another process by name
without divulging its own identity; good
for serverprocesses.

Linda Broadcast messages (that need not be
signed with a process identifier); great-
est flexibility: add or remove processes
dynamically.

Choosing primitives: data flow
• One-way or two-way? Telegrams or tele-

phone calls.
• Asynchronous systems (e.g. Linda) use

one-way data flow.
• Synchronous systems use channels; then

decide one one-way (occam) or two-way
(Ada).

• A trade-off between expressiveness and ef-
ficiency. Are you mostly sending messages
that don’t need a reply? Or, do you expect
most messages to need a reply?

Choosing primitives: Process creation
• Do all process exist at program startup

time, or can processes be created dynami-
cally?

Why would you want dynamic creation?

Flexibility Design the program without knowing
how many processes will be needed.

Dynamic use of resourcesMatch number of
processes to requirements at runtime: save
memory and improve efficiency.

Load balancing Add new processes as the
workload increases.

Static or dynamic?
• Static creation works best in embedded

systems (air traffic and medical moni-
toring) where configuration is fixed and
predictability is important!

• Dynamic creation for large transaction
processing systems (airline reservation).
Computing requirements change during
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the day; you can’t halt the system to
change configuration!

Message passing (refresher)
(Bacon, chapter 13)

• Used for systems that can’t share memory
(or don’t want to)

• Used for synchronizationbetween
processes.

• Used fordata transferbetween processes.
• Used over networks.
• Messages may be sent to processes on

different computers, on different CPUs on
the same computer, or on the same CPU.

A typical message
(Bacon, Figure 13.1)

• Two parts to a message:
– Message header(used by the trans-

port mechanism):
∗ Destination
∗ Source
∗ Type of message

– Message body(used by the commu-
nicating processes)

• The source information is likely to be
either inserted or checked by the OS!

• Messages may be sent via pipes, sockets,
or other network methods.

• Transmission is usually arranged by the
OS.

Basic message passing (1)
(Bacon, Figure 13.2)

• ProcessA wants to send a message to
processB.

• Assumptions:
– each process knows the identity of

the other
– it is appropriate for the sender to

specify a single recipient, and for the
recipient to specify a single sender

– there is an agreement about the size
of the message and its content (an
application protocol).

– asynchronous, buffered message
passing

Basic message passing (2)
• A builds up the message and executes the

SEND primitive. It doesn’tblock.
• B reaches the point where it needs to syn-

chronize with and receive data fromA, so
it executes WAIT.

• If B isn’t WAITing when the message
arrives, (a copy of) the message is stored
in B’s message buffer for the time being.

• If B calls WAIT before the message arrives,
its execution isblocked.

Message passing options
(Bacon, §13.5)

• Receive from ‘anyone’
• Send the same message to more than one

process
• Request& reply primitives (useful for

client/server systems; wait for a reply to
acknowledge receipt)

• Wait only a certain time for a reply; auto-
matic resending

• Wait for a particular message from one
process, and not just the oldest (matching
message types, ports)

• Expire messages

Broadcast and multicast
(Bacon, §13.5.6)

• You may want to send to many processes
at once.

• Can use a special destination code in the
header.

• The implementation can then send the one
message to multiple processes.

• This is more efficient than executing the
same SEND message many times.

• RFC1983 defines the following terms:
unicast An address which only one host

will recognize.
multicast A packet with a special desti-

nation address which multiple nodes
on the network may be willing to
receive.

broadcast A special type of multicast
packet which all nodes on the net-
work are always willing to receive.

Message timeout
Bacon (§13.5.8)

• You may want to stop waiting after a while,
if you don’t receive a message.

• Specify atimeout period: stop waiting
aftern ms, even if I haven’t received my
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message.
• Useful in case the source process has

crashed, or if a message has been lost on
the network.

• Very useful in real-time systems, where
things must happen in a certain time, or
else!

Message expiration
• You may want to replace out-of-date

messages before the receiver process has
looked at them.

• For example, if you are tracking an object
(a satellite or a part of a large industrial
process), you only care about its current
position.

• Discarding out-of-date messages saves on
processing time for the receiver.

• Can tell the implementation: just keep the
most recent message of this type (set the
buffer size to 1).

Case Studies: Ada, Occam & Linda
Case study: Ada

(Ben-Ari, chapter 8)

• Developed for DoD as their standard lan-
guage for critical systems. Now Ada 95.

• Communication in Ada is synchronous and
unbuffered.

• Two tasksmust meet in arendezvousin or-
der to communicate. The first one to arrive
must wait for the arrival of the second.

• Remember: both tasks are executing con-
currently, and they only synchronize at the

rendezvous.

The rendezvous
• The location of the rendezvous belongs to

one of the tasks, called theacceptingtask.
The other task, thecalling task, must know
the identity of the accepting task and the
name of the location of the rendezvous.

• However, the accepting task doesnotknow
the identity of the calling task.

• Great for programming servers!
• A task is divided into two sections, the

specificationand thebody. The specifi-
cation may only contain declarations of
entries.

A buffer
Task specification:

task Buffer is

entry Append(I: in Integer);

entry Take (I: out Integer);

end Buffer;

A sample call:

Buffer.Append(I);

Task body:

task body Buffer is

begin

...

accept Append(I: in Integer) do

... statements

end Append;

...

end Buffer;

What happens?
• The accepting task is an ordinary sequen-

tial process. Theaccept statement is
executed in sequence when the instruction
pointer reaches it, except that its definition
requires synchronization with a calling
task.

• When both tasks meet:
1. The calling task passes itsin pa-

rameters to the accepting task and
blocks.

2. The accepting task executes the
statements in the acceptbody.

3. Theout parameters are passed back
to the calling task.

4. The rendezvous ends; both tasks are
no longer suspended.

Degenerate bounded buffer
task body Buffer is

B: array(0..N-1) of Integer;

In_Ptr, Out_Ptr: Integer := 0;

Count: Integer := 0;

begin

loop

accept Append(I: in Integer) do

B(In_Ptr) := I;

end Append;

Count := Count + 1;

In_Ptr := (In_Ptr + 1) mod N;
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accept Take(I: out Integer) do

I := B(Out_Ptr);

end Take;

Count := Count - 1;

Out_Ptr := (Out_Ptr + 1) mod N;

end loop;

end Buffer;

Much better . . .
task body Buffer is

B: array(0..N-1) of Integer;
In_Ptr, Out_Ptr: Integer := 0;
Count: Integer := 0;

begin
loop

select -- non-deterministically!
when Count < N =>

accept Append(I: in Integer) do
B(In_Ptr) := I;

end Append;
Count := Count + 1;
In_Ptr := (In_Ptr + 1) mod N;

or
when Count > 0 =>

accept Take(I: out Integer) do
I := B(Out_Ptr);

end Take;
Count := Count - 1;
Out_Ptr := (Out_Ptr + 1) mod N;

end select;
end loop;

end Buffer;

More Ada
Theselect statement:

• Evaluate the guards. If there are calling
tasks waiting on entry queues for open
alternatives, a rendezvous is commenced
with the first task on one of those queues.

• Alternatives:select with else, delay,
or terminate alternatives.

More bits and pieces:

• dynamic task creation
• taskpriorities

Occam

Summary:

• What’s in a name?
• CSP
• Unusual syntax
• Every statement is a process
• ‘Assembler’ for Transputer networks
• ‘Minimalist’ support for distributed pro-

gramming . . .
• . . . based on rendezvous

Occam versus Ada
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Occam peculiarities

• There are assignments, input statements,
and output statements (plus the usual con-
ditional and looping constructs, but no
recursion!)

• Every statement is considered to be a
process. It is up to the programmer to
indicateexplicitly whether statements will
be combined in sequence or in parallel.
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SEQ

statement_1

statement_2

statement_3

or

PAR

statement_1

statement_2

statement_3

• Indentation is used to group statements.

Occam Sieve (1)
VAL INT n IS 50: -- # of primes to generate
VAL INT limit is 1000: -- range to check
[n-2] CHAN of INT link: -- links between filters
[n-1] CHAN of INT prime: --channels to Print process
CHAN OF INT display: -- output display to device 1
PLACE display AT 1:

PROC Starter(CHAN OF INT out,print)
INT i:

SEQ
print ! 2
i := 3
WHILE i < limit

SEQ
out ! i
i := i + 2: -- generate odd numbers

PROC Sieve(CHAN OF INT in,out,print)
INT p,next: -- filter out one prime

SEQ
in ? p -- p is prime
print ! p
WHILE TRUE

SEQ
in ? next
IF (next\p) <> 0 -- evaluated first

out ! next
TRUE -- IF needs a true guard

SKIP:

Occam Sieve (2)
PROC Ender(CHAN OF INT in,print)
INT p: -- consume rest of numbers

SEQ
in ? p
print ! p
WHILE TRUE

in ? p:

PROC Printer([] CHAN OF INT value)
INT p: -- print each prime, in order

SEQ i = 0 FOR SIZE value
SEQ

value[i] ? p
display ! p:

PAR -- main program
Starter(link[0],prime[0])
PAR i = 1 FOR n-2

Sieve(link[i-1],link[i],prime[i])
Ender(link[n-1],prime[n-1])
Printer(prime)

Linda
• Linda was developed by David Gelernter

in the 1980s. It is a small set of parallelism
primitives which can be added to any lan-
guage. So there is C-Linda, Ada-Linda,
etc.

• The Linda system provides atuple space.
This is a region of ‘shared’ memory, ac-
cessed only by the Linda primitives. The

tuple space is used to store typed tuples of
objects.

• The Linda primitives use pattern matching
on the tuple signatures. None of these
match:

• (1,’A’) (integer,character)
• (1,2) (integer,integer)
• (’A’,1) (character,integer)

Linda primitives
The primitives (whereT is a tuple):
• Output(T) Add T to the tuple space.
• Input(T) Remove a matching tuple from

the tuple space. If there isn’t one right now,
suspend until there is.

• Read(T) Just likeInput(T), but don’t
remove the tuple.

• Eval(T) Each element is evaluated, and
the results are packaged into a tuple and
stored in the tuple space. This call is
non-blocking: the evaluations happen in
‘parallel’.

More Linda primitives
• Try_Input(T) Non-blockingInput(T).

Continue if there isn’t a matching tuple
(return a status value).

• Try_Read(T) Non-blockingRead(T).
• Alternative names:out, in, read, inp,

readp, exec.

More Linda
• ‘Parameter’ (message) passing:

Output(1, ’A’);

-- one process creates arguments
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Input(I: Integer; C: Character);

-- one process receives them

• Job allocation to processes:
Input("job", J: Job_ID, 24);

-- process 24 waits to serve

Output("job", 17, 24);

-- send request to process 24

Output("job", 17, P: Process_ID);

-- send request to any process

Remote procedure call
-- code for caller

Output("Proc", 24, 65, ’X’);

Input(24, B: Boolean);

-- code for accepting process

Input("Proc", Caller: Process_ID,

I: Integer; C: Character);

Proc(I, C, B);

Output(Caller, B);

Futures
A programming construct specifying that the
value of some computation will be needed at
some later point, but allowing the system to
schedule that computation to run at any arbitrary
time. Futures are one way to presentlazy eval-
uation in shared-variable programming. (Greg
Wilson)

-- caller; Compute_job1 is a function

Eval("job1",Compute_job1);

-- do some computation

-- -- -- -- --

-- now we need the answer

Input("job1", Answer: Integer);

Linda comments
• Atomicity: each operation on the TS must

appear to beindivisible.
• TS is unprotected: any worker can gain

access toany information. Unsuitable for
e.g. multiple clients/servers

• Tags are linear character sequences: no
hierarchyand noscoping. This is bad for
abstractions, and hinders the development
of large programs.

• TS operations are slower than ‘normal’
shared memory or message passing opera-
tions (due to unique copies and exclusive
access)

• Even more expensive on distributed archi-
tectures: hardware broadcasting helps.

Sockets, streams, XTI
• W. Richard Stevens,UNIX Network Pro-

grammingandAdvanced Programming in
the UNIX Environment.

• Two main ways of doinginterprocess
communication (IPC) in UNIX : sockets
andXTI .

• XTI and its predecessorTLI are imple-
mented using streams.

OSI network model
• Details of message transmission vary from

the voltage and current used (low level), up
to the format of the message (high level).

• ISO has produced theOpen Systems Inter-
connection Reference Model(OSI)

The layers:
1. Physical (hardware, OS)
2. Data link (OS)
3. Network (IPv4, IPv6)
4. Transport (TCP, UDP, or bypass)
5. Session (Apps)
6. Presentation (Apps)
7. Application (Apps)

• Sockets and XTI bridge levels 4 and 5.

Sockets
• BerkeleyUNIX (BSD) providessockets.

(They’re also inSVR4.)
• Compare file I/O:open, creat, close,

read, write, lseek. One argument is a
file descriptor.

• If would be nice (transparent) if this could
be transferred to network I/O.

• Sockets let you do this!
• Given a socket file descriptor, you can call

fdopen and get a nice, buffered stream
that you can callfprintf etc. on.

• Extremely important: Don’t confuse the
two uses of the word ‘stream’!

Protocols and names
• Sockets use aclient-server protocol. This

is not symmetrical: initiating a network
connection requires that the program know
which rôle (client or server) it is to play.

• A network connection can be connection-
oriented (e.g.TCP) or connectionless (e.g.
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UDP). The former is more like file I/O.
• Names are more important in networking:

– You can do file operations with only
a file descriptor: you don’t need to
know the original name of the file.

– A networking application may need
to know the name of its peer process
to verify that the process has author-
ity to request the services.

Connection-oriented or connectionless
• Connection-oriented protocol⇔ concur-

rent server
• Connectionless protocol⇔ iterative server
• For a connection-oriented use: first start the

server:socket, bind, listen, accept.
Then clients can start:socket, connect.

• Once connected, server and client commu-
nicate usingread andwrite.

• For a connectionless use: usesocket and
bind, but then userecvfrom andsendto

to communicate without establishing a
‘connection’.

inetd
• One of the most importantUNIX processes!
• Handles requests: smtp, ftp, telnet, day-

time, etc.
• Uses configuration files to specify pro-

tocols and ports, user ids, filenames and
parameters; sets up a socket for each
service

• Usesselect call to listen for requests
• Maybe do afork/exec

• Maybe not, e.g. daytime is handled itera-
tively

Streams (1)
• Streams are used in System V to implement

theTransport Layer Interface (TLI ) and
the X/Open Transport Interface (XTI )
(the System V equivalents of sockets).

• Streams provide a full-duplex connec-
tion between a user process and a device
driver. (It could be a pseudo-device driver.)
There’s no need for this to be associated
with a hardware device.

• Data transferred up and down a stream
consists ofmessages.

• Each message contains acontrol part and
a data part (their content is defined by the
application).

Streams (2)
• There are two system calls to read and

write these messages:getmsg andputmsg.
(There’s also apoll call to support multi-
plexing (see below).

• A process can add modules between the
stream head (the system call interface) and
the device driver.

• Any number of modules can be ‘pushed’
onto a stream. Each new module gets
inserted just below the stream head (aLIFO

stack).
• An example of a processing module is one

to implement a terminal line discipline
(protocol). The driver just inputs and out-

puts characters and it is the terminal line
discipline that implements features such
as special character handling, forming
complete lines of input, etc.

Streams (3)
• Streams provide a nice layered implemen-

tation of the networking system. A streams
module that accepts data from multiple
sources is called amultiplexor .

• For example, theTCP/IP daemon builds the
multiplexor when it is started (typically at
system initialisation).

• Before streams, the link between a process
and most device drivers (other than disks)
was theUNIX character I/O system.

• Without streams, if you didn’t have the
source code forUNIX and wanted to add
a new feature to the kernel, you wrote a
character device driver to do what you
wanted. You accessed the driver through
theopen, close, read, write, andioctl

system calls.

Streams (4)
• (This is how most third-party network-

ing software is implemented on systems
without streams.)

• The problem with this is that this facility
just isn’t adequate or efficient enough for
implementing network protocols. And
also, the modules required to implement
protocols at layers above the device driver
don’t belong in the device driver.
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• Using streams, a site without source code
can add new stream modules to their sys-
tem in a fashion similar to adding a new
device driver.

• Oops, what about Linux?

XTI
• In 1986, AT&T released TLI with SVR3,

which contained only streams and TLI
building blocks, i.e. no TCP/IP, which was
provided by third parties.

• SVR4 (1990) provided TCP/IP as part of
the basic OS.

• XTI defined and released by the X/Open
Group in 1988: a superset of TLI.

• Posix.1g standard started with XTI.
• Programming techniques the same as with

sockets.
• What’s different: function names, function

arguments, and some of the ‘nitty-gritty
details’.

Further references
• Reading: DS chapter 2.
• More on sockets: DS §4.5, Bacon §23.16.2
• More on System V streams: Bacon

§23.17.5

Challenges
Distributed systems have problems that shared
memory systems don’t:
• Individual computers can crash.
• Message transmission between processes

may be unreliable.
• Message transmission may take significant

time.
• The computers may not all agree on what

time of day it is.

All of these can lead to inconsistencies in the
state of the system.

Crashes

• References: DS 13 & 15, Bacon 14
• A distributed system may involve many

computers.
• What happens if one crashes?
• Suppose that a process has side-effects

before it crashes, e.g., partially writes to a
file, sends instructions to other processes
. . .

• More generally, suppose that an opera-
tion has anexternally visible effectbut is
interrupted . . .

• How do you keep the system consistent?

Modelling crashes

• A simple model for a server crash is the
fail-stop model.

• It assumes that the crash happens instantly,
that the system stops immediately, and
doesn’t go wild.

• Hardware crash: all registers, cache,
MMU, volatile main memory are gone!

• Changes to persistent state are assumed to
be correct, but may be incomplete.

• Software crash: clients can determine that
there is a failure in the server.

• Many crashes don’t behave this way!

Crash resilience
(DS §15.3, Bacon §14.3)
• If a computer fails to complete a job, we

may want the system to appear as though
that job had never started.

• That way, we could run the whole job
again later, without having to undo the
work done by the failed computer.

• Crash resilienceis the extent to which an
application has support to recover from
system crashes . . .

• . . . it’s also calledcrashor failure trans-
parency, or fault tolerance.

• ‘A fault-tolerant system can detect a fault
and either fail predictably or mask the fault
from its users.’ (DS p. 462)

Idempotent operations
(DS §4.3, Bacon §14.4)
• An operation isidempotentwhen running

it once gives exactly the same effect as
running it multiple times.

• If the expected acknowledgement of a
request fails to arrive, you can just send the
request again.

Examples: Which of the following are idempo-
tent?
• Delete a file.
• Eat your lunch.
• Add $100 to your bank balance.
• Set your bank balance to $101.
• Send an e-mail message to your friend.

Atomic operations
(DS §12.1 & 12.4, Bacon §14.5)
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• An operation on some object isatomiciff:
– when it terminates successfully, all

effects are made permanent.
– else, there is no effect at all.
– it doesn’t interfere with any other

operations on the same object.
• Atomic operations either succeed entirely,

or else they fail without harm.
• Atomic operations need not be idempotent.

Examples: Which of the following are atomic
operations?
• x = x + y*y/4;

• wait(semaphore);

• if (x == 3) stop = TRUE;

Transactions
• Transaction processing systems(TP sys-

tems) allow the building of atomic opera-
tions calledtransactions.

• Define the start and end of a given transac-
tion, then either:
commit: operation completes success-

fully and the effects are guaranteed to
be permanent

abort: failure to complete one of the
atomic operations (sorollback)

• Important point: if the system says that an
atomic operation has been ‘done’, then the
changes must be recorded in permanent
store.

Stable storage
DS §15.4
• Writing a file to disk doesn’t guarantee

that the file will persist. A disk error might
cause a failure.

• We can createstable storage, by writing
the same data to two disks simultaneously.

• That way, even if one write fails, the other
will (almost certainly) succeed.

• (It’s a bit more complicated than this! See
DS for details.)

Implementing atomic operations: logging
(DS §15.2, Bacon §14.6.1)

• If we keep alog of every operation, then we
can roll back to a consistent state when an
operation fails.

• This gives the same effect as an atomic op-
eration.

Write-ahead log:

• Keep a permanent log of what you change
before you change it.

• Record the old value, then the new value,
then change the value over.

• That way, you can always revert the sys-
tem to its former state, even in a crash (i.e.
reverting must be idempotent).

Example
Suppose x = 4, y = 0

Action Log
begin Start
x := x + 1 x = 4/5
y := x * 2 y = 0/10
x := x + y x = 5/15
end End

Implementing atomic operations: shadowing
(DS §15.2, Bacon §14.6.2)

• Make a copy of all of the data you want to
work with.

• Change the data in the copy.
• Swap the copy for the original (in a single

operation, i.e. atomically).
• That way, either the operation worked, or

else it didn’t (it isn’t ‘half-done’).
Non-volatile RAM (NVRAM)

(DS p. 233, Bacon §14.7)
• Main memory (Random Access Mem-

ory) whose contents survive computer
shutdown.

• For caching data in a file storage device:
change the contents of memory first, then
write out to disk.

• To hold the data structures for a file ser-
vice: write out the NVRAM only when the
changes are consistent.

• To buffer requests for disk access to use
the disk device efficiently.

• To implement shadowing.
NVRAM risks

• If a computer crash is not fail-stop, it may
risk corruption of permanent storage (e.g.
disks).

• To write out to disk, you must follow a
special protocol: set various registers and
call a particular system call or interrupt.

• When writing to NVRAM, you don’t fol-
low a protocol: it’s just like modifying
‘normal’ memory.

• NVRAM has more risk of corruption if the
crash is not fail-stop.
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So, what’s the point?
• NVRAM is persistent, as disks are.
• Disks have intricate arrangements in their

blocks.
• These arrangements help protect

against/detect catastrophic failures.
• Computer memory has no such protec-

tions. A system can write anywhere in
memory that it chooses.

What has this got to do with distributed
systems?

• The more computers you rely on, the
greater the probability of partial failure.

• The more computers you rely on, the more
resilient your system must be to partial
failure.

• Yet, the more computers you rely on, the
more you depend on ‘short cuts’ to make
the processing faster.

• Yet another classic trade-off!

Distributed IPC
• References: DS 4, 5, 10, Bacon 15
• IPC= inter-process communication
• This includes the low-level details (e.g.

message passing) . . .
• . . . and the high-level details (e.g. how the

system is organized and programmed)
• Today: the high-level stuff

Special characteristics of distributed systems
(DS pp. 46–49, Bacon §5.5)

Independent failure modes: The components
of the system and the network may fail

independently of each other.
No global time: Each system component must

keep track of its own time.
Inconsistent state: The effects of one com-

ponent take time to propagate to other
components; in the mean time, the system
may be left in an inconsistent state.

How to agree on time?
• A distributed system may run on many

computers, each connected by arelatively
slownetwork.

• Each computer must keep track of the time.
• How oftenshould they synchronize?
• How reliably can they synchronize?

How computer clocks work (1)
• Some computer clocks are built from

quartz crystal (like a watch).
• When a current is passed through the

crystal, it vibrates at a set rate.
• This rate creates clock ticks that can be

used to tell time.
• There may be thousands of clock ticks

each second.
• The tick rate may vary, depending on

temperature, pressure, current and manu-
facturer’s standards.

• Because computer operations are fast,
computer clock precision is more impor-
tant than for most wristwatches.

How computer clocks work (2)
• Some computer clocks work directly off

the main current.

• AC current resembles a sine wave, with a
fixed frequency.

• This frequency is generated by the power
supply, and by transformers.

• The frequency may fluctuate over time, or
be interrupted.

• Thus, the clock speed may change over
time.

• In either case, we say that clocks are
subject toclock drift .

How to create a single, logical time

(DS 10.3, Bacon §5.6)

• Send the time with each message.
• If the time of an incoming message is later

than my current time, then advance my
current time to be after the time of the
incoming message.

• This isLamport’s Algorithm.
• See Figures DS 10.5, 10.6, Bacon 5.3, 5.4.

Comments on Lamport’s Algorithm

• Creates alogical timefor all transmitted
events on a distributed system.

• The logical time may bear no resemblance
to real time.

• Only transmitted events appear on the
logical timeline.

• Local events appear in order on the local
computer, but we can’t tell whether they
happen before or after local events on
another computer unless we transmit a
message.
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Alternative methods
• Have each node broadcast its local time to

all the others. Put the local clock forward
to the value of the fastest clock.

• Periodically connect to a specialtime
server, running e.g. the Network Time
Protocol (NTP). Adjust the local clock by
counting more or fewer ticks per second
over a period of time.

Client/server review
• When a client wants something done, it

sends a request message to a server.
• The server replies when the job is done.
• The programmer must insert send/receive

messages into the code to make this hap-
pen.

• The programmer may have to deal with
message or server failure in each distrib-
uted program.

• Is there a more convenient way to program
a distributed system?

Remote procedure calls
(DS 5, Bacon §§15.6–15.7)
Motivation
• Client/server communication is based on

I/O.
• A distributed system should look and feel

like just one CPU.
• → remote procedure calls!

Idea
• A process is called as a procedure on

another machine.

• The calling process is suspended until the
result is returned.

• Data is transmitted through variables, just
like a normal procedure call.

Two approaches

• Integrate RPC mechanism into a program-
ming language that has a notation for
defining interfaces. (Java RMI)

• Add a special-purpose interface definition
language (IDL) for describing the inter-
faces between clients and servers. (Sun
RPC, CORBA, DCOM)

• In both cases, aim fortransparency: make
remote procedure calls as much like local
procedure calls as possible; no distinction
in syntax (Birrell and Nelson).

RPC: how it works
1. Client procedure calls the clientstub.
2. Client stub builds a message and traps to

the kernel.
3. Kernel sends the message to the remote

kernel.
4. Remote kernel gives the message to the

server stub.
5. Server stub unpacks the parameters and

calls the server.
6. Server does the work and returns the result

to the stub.
7. Server stub packs it in a message and traps

to the kernel.
8. Remote kernel sends the message to the

client’s kernel.

9. Client’s kernel gives the message to the
client stub.

10. Client stub unpacks the result and returns
to the client.

RPC: parameter passing (1)
Parameter marshalling

• How do you pack parameters into a mes-
sage?

• Different machines have different character
representations, e.g. ASCII/EBCDIC

• Different machines have different byte num-
bers for integer representations, e.g. 12345
(base 10) = (0,0,30,39) in PC memory,
(39,30,0,0) in SPARC memory

• One’s complement/two’s complement incon-
sistencies.

• Many different floating point number repre-
sentations

• How to pass pointers to local memory?

Solutions

• Client and server each know the types of the
parameters.

• Can arrange acanonical formfor message
transmission.

• Stubs can handle conversion to and from the
canonical form.

• Not very efficient if the machines are the
same!

• Stub procedures may be generated automati-
cally, by the compiler.

RPC: parameter passing (2)
Canonical forms
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• A network standard representation used for
all RPC parameters transmissions.

• E.g., ASCII character set, two’s complement
integers, 0/1 for Boolean values, IEEE float-
ing point values, all other data little-endian.

• Client/server stubs must convert their para-
meters into this form before transmission
across the network.

Pointer mechanisms

• Pointers to structures of known length can
be handled by passing the structures

• Pointers to arbitrary data structures (e.g.
graphs) may be forbidden.

• Alternatively, send pointers, and the server
may dereference each pointer by passing
messages back to the client: very inefficient!

RPC (Part 2): dynamic binding
References: DS 5, Tanenbaum §2.4.

• In an RPC context, dynamic binding is
used to match up clients and servers.

• Each server declares its specification to a
stub generator.

• The stub generator produces aserver stub
and aclient stub.

• Clients linked with the appropriate client
stubs at compile-time.

• Servers linked with the appropriate server
stubs at compile-time.

• (Doesn’t have to be this way, e.g. CORBA
and DCOM.)

Diversion: Sun RPC (1)
• Reference:http://pandonia.canberra.

edu.au/ClientServer/rpc/rpc.html

• We want these remote procedures:
long bin_date(void);

char *str_date(long);

• The program with these specified as remote
procedures for a remote machine would
define the two functionsbin_date and
str_date in file rdate.x:
program RDATE_PROG {

version RDATE_VERS {

long BIN_DATE(void) = 1;

string STR_DATE(long) = 2;

} = 1;

} = 1234567;

Sun RPC (2)
• Run this file throughrpcgen. You get:

rdate.h a header file for both client and server
sides.

rdate_svc.c a set of stub functions for use on
the server side. This also defines a full
main function that will allow the server
side to run as a server program i.e. it can
run and handle requests across the network.

rdate_clnt.c a set of stub functions for use on
the client side that handles the remote call.

Sun RPC (3)
Functions are generated from the specification as
follows:
• The function name is all lower-case, with

_1 appended.

• On the client side the function generated
has two parameters, on the server side it
also has two; the extra parameter differs
between sides.

• The client side function has either the one
parameter of the spec, or a dummyvoid *

pointer (useNULL) as first parameter.
• On the client side, the second parame-

ter is ahandlecreated by the C function
clnt_create().

• On both sides, the function return value
is replaced by a pointer to that function
value.

Sun RPC (4)
In this example,rdate_clnt.c defines and
implements

long *bin_date_1(void *, CLIENT *);

char **str_date_1(long *, CLIENT *);

On the server side,rdate_svc.c refers to (and
you must implement):

long *bin_date_1(void *, struct svc_req *);
char **str_date_1(long *, struct svc_req *);

• Now you must write client-side wrappers
and implement those ‘_1’ functions at the
server end.

• The client’s main program must call
clnt_create() before calling any remote
procedure, and pass this client object to the
various client_1 functions.
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Registration with the binder
• Serverexportsits interface to the binder: it

gives the binder its name, version number,
a unique identifier (e.g. 32 bits), and a
handle to locate it.

• The handle may be some sort of network
address, etc.

• The server may register or deregister itself
(rpcb_set andrpcb_unset on Sun).

• Clients issue lookup messages to the binder
to locate andimport servers.

• The binder ensures version compatibility.
• Disadvantages: (a) extra overhead of

exporting and importing interfaces (b) cen-
tralized binder may create a bottleneck (c)
multiple binders may need to be informed
of a server’s registration.

RPC failure semantics
Some common kinds of failures:

1. Client can not locate server
2. Request message from the client is lost
3. Reply message from the server is lost
4. Server crashes after receiving a request
5. Client crashes after sending a request

Can not locate server
• Server is down.
• Client wants an older version of the server.
• Use a particular return value, e.g.−1.

However, a special return value may not be
available in all functions.

• Raise anexception, which the client pro-
gram may trap. However, not all languages

have such facilities (e.g. Pascal). This also
weakens RPC transparency.

Lost request messages
• These can be handled by the OS kernel.
• After sending a request, start a timer. If

nothing comes back in a certain amount of
time, resend the request.

• If there is no reply aftern messages have
been sent, then assume that the server
can not be located (i.e. we’re back to the
previous condition).

Lost reply messages
• Difficult for the client to distinguish the

condition from lost request or slow server.
• Many servers arestateless, so they don’t

care whether the client gets the message.
• For idempotent requests, a client can repeat

the request after a timeout.
• Some requests are not idempotent, e.g.

credit transfer.
• Client may assign each request asequence

number. The kernel can keep track of
each client’s current sequence number, and
resend a reply to a request with the same
sequence number, if it has already done the
work.

• Client request headers may distinguish
repeat requests from new requests.

Server crashes
• If a server crashes before receiving a

request, then treat it as case 1.
• Otherwise, a server crash may occur (a)

after receiving but before processing a
request, or (b) after processing the request,
but before replying.

At least once semantics: wait until the server
reboots, then retry. But what if the work
already completed successfully?

At most once semantics: give up, and report
failure. But maybe the work was actually
done?

Exactly once semantics: desirable, but very
hard to achieve!

• This problem makes RPC behave very
differently from single-processor systems.

Client crashes (1)
• May produce useless server computations,

calledorphans. These tie up the CPU and
other resources, such as files that may only
be accessed by one process. Also, after
rebooting, may resend RPC requests that
are already active, and get confused when
the reply from the orphan comes in!

Extermination: clients keep logs of what they
are doing. After a reboot, then inspect the
logs and send messages to the servers to
exterminate orphan computations.
This uses a lot of disk space, and servers
themselves may be clients. Thus, orphans
and grandorphans, etc. may exist.

Client crashes (2)
Reincarnation: each client stores anepoch num-

ber. On reboot, it broadcasts a new epoch.
Old epoch computations are killed, and old
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epoch replies can be easily detected.

Gentle reincarnation: after receiving an epoch
broadcast, a server tries to locate the owner
process of the current computation. If it can
not find the owner, then the computation is
killed.

Expiration : each RPC has aquantumT to fin-
ish its work. If a server needs more time, it
must request that time from the client (this
is a nuisance!). If after a crash, a client
waits for timeT before restarting, then all
orphans will die.

What is a reasonableT? It depends on the
kind of RPC.

Killing orphans can be dangerous when they are
performing file locking or making requests of
other services.

RPC limitations
• Transparency is limited
• Remote access to global variables (e.g.

UNIX errno) is hard to implement.
• Weakly-typed languages (such as C) use

null-terminated strings of arbitrary size,
etc., which makes it hard to marshal para-
meters correctly.

• Does not work well with pointer-based
data structures.

• Can not always deduce the number and
types of parameters from a formal specifi-
cation of the code, e.g.printf.

Java
• Java in the news: Sun versus Microsoft

• What is Java ‘good’ at?
• Security policies; sandboxes
• Internationalization (I18N) and localiza-

tion (L10N); Unicode, etc.
• Database connectivity (JDBC)
• ‘Migration’ of classes and objects: RMI,

applets, servlets, aglets, . . .
• ‘Write once, run anywhere’ (or is it ‘crash

everywhere’?)

Problems
• Is it possible to pin down the Java lan-

guage?
• Standardization process is underway
• Sun’s JDK changes a lot between releases;

1.2 has major differences
• Example:

System.out.println("Hello world!");

This is no longer (1.1.4) recommended.
Instead, use aPrintWriter:
PrintWriter out =

new PrintWriter(System.out,true);

out.println("Hello world!");

More problems . . . for us
• The Java class library is huge (in the finest

tradition of Smalltalk and Modula-3).
• Books can’t keep up with the software.
• So . . . we need to use the online hypertext

documentation . . .
• . . . but even that isn’t complete, so some

experimentation is called for
• There are defects in the JDK (I found one

in 1.1.4)

Problems it solves
• Adding active/interactive content to web

pages (not just cute animations)
• That content runs in a secure environment,

and can be multi-threaded
• Examples: dynamic front-ends to informa-

tion services, communications programs
(net chat), dissect a frog

What you get
• Apart from java.lang andjava.util,

etc., you get:

java.applet implement applets
java.awt GUI stuff (→ JFC)
java.beans reusable components
java.io I18N I/O classes
java.lang.reflect reflection
java.net sockets, etc.
java.rmi RMI (Java RPC)
java.security security policies
java.sql database access
java.text dates, money, etc.

And now:
javax.servlet servlets

Java and distributed systems
• You can use the nice socket interface to do

client/server-type stuff.
• Use the web to give you an interface; use

Java (applet etc.) to do the ‘work’.
• Servlets: a replacement for CGI.
• Aglets (IBM): mobile agents (relies on

serializability); used in a similar way to
applets
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• RMI (Remote Method Invocation): a clean
implementation of RPC.

RMI
• Define a remote interface
• Write an implementation class
• Write a client (could be an applet and a

web page)
• Compile Java source files
• Generate stubs and skeletons
• (Move HTML file to deployment directory)
• Set paths for runtime (CLASSPATH)
• Start remote object registry
• Start server
• (Start applet)

What happens
• The client accesses the registry (binder)

and gets back an object (proxy) that imple-
ments the remote interface.

• Now you can access fields and invoke
methods on the object.

• The methods are caught in the stub, which
communicates with the skeleton on the
remote machine.

• You can pass objects as parameters and get
objects back.

• BUT parameter objects are passed by
value only.

What’s new in 1.2
• Write your own SocketFactory (for en-

cryption, etc.)
• Object activation
• An activation daemon, rmid

• A ‘pure Java’ ORB

The Getting Started example
• From the online documentation
• A distributed ‘Hello World’
• Get a remote ‘Hello World’ object
• Ask it for its string
• Display it in an applet
• (Alternatively, write a stand-alone client)

Define a remote interface
package examples.hello;

public interface Hello

extends java.rmi.Remote

{

String sayHello()

throws java.rmi.RemoteException;

}

• public
• extends Remote
• method throws RemoteException

Implementation class (1)
package examples.hello;

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class HelloImpl
extends UnicastRemoteObject
implements Hello

{
private String name;

public HelloImpl(String s)

throws RemoteException {
super();
name = s;

}

public String sayHello()
throws RemoteException {
return "Hello World!";

}

Implementation class (2)
public static void main(String args[])

{ // Create, install a security manager

System.setSecurityManager(new

RMISecurityManager());

try {

HelloImpl obj = new

HelloImpl("HelloServer");

Naming.rebind(

"//myhost/HelloServer",obj);

System.out.println(

"HelloServer bound in registry");

} catch (Exception e) {

System.out.println(

"HelloImpl err: "+e.getMessage());

e.printStackTrace();

}

}

}

Use remote service (1)
package examples.hello;

import java.awt.*;

import java.rmi.*;
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public class HelloApplet

extends java.applet.Applet

{

String message = "";

public void init() {

try {

Hello obj = (Hello)Naming.lookup(

"//" + getCodeBase().getHost() +

"/HelloServer");

message = obj.sayHello();

}

Use remote service (2)
catch (Exception e) {

System.out.println(

"HelloApplet exception: " +

e.getMessage());

e.printStackTrace();

}

}

public void paint(Graphics g) {

g.drawString(message, 25, 50);

}

}

Write web page to contain applet
<HTML>

<title>Hello World</title>

<center> <h1>Hello World</h1>

</center>

The message from the HelloServer is:

<p>

<applet codebase="../.."

code="examples.hello.HelloApplet"

width=500 height=120>

</applet>

</HTML>

Compile everything

• Hello.java→ Hello.class
• HelloImpl.java→ HelloImpl.class
• HelloApplet.java→ HelloApplet.class
• use rmic:

rmic examples.hello.HelloImpl

• generatesHelloImpl_Stub.class and
HelloImpl_Skel.class

Ready to go

• Deploy the files
– Move everything into an area that can

be served by a web server
• Start registry

– Windows:start rmiregistry

– Unix: rmiregistry &
• Start remote server

java -Djava.rmi.codebase=http://somewhere/codebase/
examples.hello.HelloImpl

• Run applet
– Load into a browser or use ap-

pletviewer

The result

You don’t need an applet
• You can write a stand-alone client
• The server code stays the same
• In the client:

– you don’t need to refer to the code-
base; you can e.g. hard-code the
address of the server

– don’t extend Applet (init, paint, etc.)
– write a main() that e.g. just prints out

what you get back from the server
• This doesn’t work! You get an exception:

no security manager installed.
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• So in the client, install one, just as in the
server

Wait a minute!
• rmic is a Java program that reads a .class

(i.e. binary) file and spits out two .class
files. How?

• Java programs can load .class files (i.e.
classes) and interrogate them. This feature
is called ‘reflection’.

• You can get the class object corre-
sponding to any object: every ob-
ject recognizesgetClass(). Or use
Class.forName("some_class")

• Then get access to the fields and methods
of that class

• The compiler can be called from the virtual
machine: it can generate .class files.

An example
import java.io.*; import java.lang.reflect.*;
public class PrStringMethods {

public static void main(String[] args)
throws java.lang.ClassNotFoundException {
int i;
PrintWriter out = new PrintWriter (System.out,true);
Method[] ml = Class.forName (

"java.lang.String").getMethods();
for (i=0; i<ml.length; i++)

out.println(ml[i].toString());
}

}

The output
public static java.lang.String

java.lang.String.copyValueOf(char[])

public static java.lang.String

java.lang.String.copyValueOf(

char[],int, int)

public static java.lang.String

java.lang.String.valueOf(char)

public static java.lang.String

java.lang.String.valueOf(double)

. . .

public int java.lang.String.length()

. . .

public java.lang.String

java.lang.String.trim()

So what?
• The Java compiler, rmic, and rmiregistry

are written in Java, and run in a normal
Java virtual machine

• You don’t need to have any of the .class
files on the client side when you start exe-
cution; they get transferred when needed

• You can do reflection calls on any remote
object

• For example, find out about ‘hidden’ fields
or methods

• This is like having an interface repository!

Object activation
• New to 1.2
• In the previous model, all remote objects

run as threads in the server process
• What if you could create new virtual

machines as needed?
• Activation: tell the activation daemon

(rmid) that you’re interested

• Server-side decision only: client code stays
the same

• Closer to an implementation repository
than the original model

So why bother?
• A ‘pure Java’ solution
• No compromises for language-

independence
• Uses the Java object model
• What you’re meant to do:

– Use RMI within a Java-only group of
servers

– Use CORBA to talk to servers outside
the group

• 1.2 contains a bare-bones ORB to get you
started (naming service but no repositories)

Correctness
References: DS §§13.2 & 14.5, Bacon 17,
Ben-Ari 2, Tanenbaum §3.5.

• There are two types of correctness proper-
ties:

Safety properties: The property mustalways
be true.

Liveness properties: The property musteventu-
ally be true (‘eventually’ includes ‘now’).

Examples of safety properties
Mutual exclusion: two (or more) processes may

not interleave certain sequences or subse-
quences of instructions – one process must
complete its set before another process can
start its own. The ordering of theprocesses
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is not important. For example, access to
system resources (disks, printers).

Absence ofdeadlock: a non-terminating sys-
tem must always be able to proceed doing
useful work. If a system gets into a state
where it isn’t doing anything usefuland
can’t respond to any external signal or
request, then we say that the system is
deadlocked. The system is ‘hung’. Anidle
system is not necessarily deadlocked.

Liveness and fairness (1)
• A program which does nothing will have

most safety properties. For a program to
be correct, it must also have someliveness
properties.

Absence of individual starvation: if a process
makes a request for a resource,eventually
it will be honoured. (This could be after a
year!)

• Contention is a reality. We will want to
specify how it is handled, viafairness
properties.

• Weak fairness: a process which continu-
ally makes a request will eventually have
its request granted.

Fairness (2)
• Strong fairness: a process which makes

a request infinitely often will eventually
have its request granted.

• Linear waiting : a process which makes a
request will have its request granted before
any other process has the same request

granted more than once.
• FIFO (first-in, first-out): a process which

makes a request will have it granted before
another process, which made the same
request butlater, has its request granted.

• This system isweakly fair, but notstrongly
fair:

Check request

0
P2

1

0
P1

1

t0 t1 t2
Time

• Weak and strong fairness are not very prac-
tical measures: they don’t tell you whether
a system is really usable.

• Linear waiting is practical; it enables the
calculation of a bound of the time required
for a request to be granted.

• FIFO is the strongest type of fairness.
It’s easy to implement on ‘single-box’
computers, but for distributed systems, it
may not be clear what ‘earlier’ and ‘later’
mean, so weaker definitions of fairness are
important.

Deadlock

• A set of processes is deadlocked when
each process in the set is waiting for an
event which can only be caused by another
process in the same set.

‘Deadlocks in distributed sys-
tems are similar to deadlocks in
single-processor systems, only
worse.’ [Tanenbaum, p. 158]

• Example:

Process A Process B
Holds the printer Holds the tape drive
Wants the tape drive Wants the printer

• Deadlock paths: Bacon figures 17.1 &
17.2.

Conditions for deadlock
Coffman et al.,System deadlocks, Computing Sur-
veys, June 1971.

A set of tasks is deadlocked if and only if all four
of the following conditions hold simultaneously:

Mutual exclusion: Tasks claim exclusive con-
trol of the resources they require.

Wait for: Tasks hold resources already allo-
cated to them while waiting for additional
resources.

No preemption: Resources can not be forcibly
removed from the tasks holding them until
the resources are used to completion.

Circular wait: A circular chain of tasks exists,
such that each task holds one or more
resources that are being requested by the
next task in the chain.
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Strategies
Tanenbaum §3.5, DS §13.2

• The ostrich algorithm(ignore the prob-
lem).

• Detection(let deadlocks occur, detect
them, and try to recover).

• Prevention(statically make deadlocks
structurally impossible).

• Avoidance(avoid deadlocks by allocating
resources carefully).

All four options are serious alternatives for a
distributed system!

Object allocation graphs

����
������

R1 P R2

• Processes in circles; resources as dots in
squares. Here, P has been allocated R1
(solid arrow), and is requesting access
to one of the two R2 resources (dashed
arrow).

• The idea: avoid cycles!
• See Bacon §17.6 for an example.

Deadlock detection
DS §13.2, Bacon §17.7

• Allocation matrixA, whereaij is the num-
ber of objects of typej allocated to process
i.

• Request matrixB (same structure)
• Available objects vectorV , working vector

W

• Basic idea: find a process that could be
given the necessary resources. Pretend that
you make the allocation and that it com-
pletes and then releases all the resources
(add them all toW ).

• Keep going; any processes left at the end
are deadlocked.

Centralized deadlock detection
DS §14.5, Tanenbaum §3.5.1
• Atomic transactions! So no killing off, just

aborting. A transaction may well succeed
the second time.

• Each machine maintains its own local
object allocation graph . . .

• . . . but also maintain a centralized object
allocation graph co-ordinator.

• If a process adds or deletes an edge, it
sends a message to the co-ordinator. (Or,
the co-ordinator can ask for information
when it needs it.)

• Delays (messages arriving in the ‘wrong’
order) can lead tofalse deadlockand
killing a process when you don’t need to.

• A possible solution: use Lamport’s Algo-
rithm to provide global time; but then there
are more overheads.

Distributed deadlock detection
DS §14.5, Tanenbaum §3.5.1
• Lots of algorithms out there.
• Chandy-Misra-Haas
• Processes are allowed to request multiple

resources (e.g. locks) at once. A transac-

tion can be speeded up considerably. But
now a process may wait on two or more
resources simultaneously.

• Sendprobemessages around. Each is a
triple:

– Process that just blocked
– Process sending the message
– Process to whom it is being sent

• Probes get updated as they go around. If a
probe returns to its sender, it is deadlocked!

• A deadlocked process commits suicide.
Deadlock prevention

DS §13.2, Tanenbaum §3.5.2
• Allow processes to hold only one resource

at a time.
• Require processes to request all their

resources initially.
• Make processes release all resources when

asking for a new one.
• All three are cumbersome!
• Impose an ordering on the resources, and

require processes to acquire them in strictly
increasing order. Then a process can never
hold a high resource and ask for a low one:
cycles are impossible.

Distributed deadlock prevention (1)
Tanenbaum, §3.5.2
• If you have global time and atomic trans-

actions . . .
• Assign each transaction a global timestamp

when it starts. Crucial point: no two trans-
actions are ever assigned exactly the same
timestamp. (Use process numbers to break
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ties.)
• When one process is about to block waiting

for a resource that another process is using,
check which has the larger timestamp (i.e.
is younger).

• Allow the wait only if the waiting
process has a lower/higher timestamp
(is older/younger) than the process waited
for.

Distributed deadlock prevention (2)
• It’s wiser to give priority to older

processes. The system has a larger in-
vestment in them, and they are more likely
to hold more resources.

• A young process that is killed eventually
ages until it is the oldest: so no starvation.

• This setup, where a processes that makes a
request either gets it, waits, or is killed, is
calledwait-die.

• Alternatively: if the requesting processes
is older, it can preempt; if younger, it can
wait. This is calledwound-wait.

• Wait-die can get into a cycle of repeatedly
killing a young process.

Deadlock avoidance
Bacon, §17.8 (Banker’s algorithm)

• If all processes can specify their total
object requirements before they run . . .

• To the deadlock detection algorithm, add:
Maximum object requirements matrixC.

• The idea: given a request, can it be satisfied
without leading to deadlock?

• If the allocation is made, and all the
processes then request their maximum
allocation of objects, would deadlock then
exist? If not, then it is safe to grant the
request.

• This is a worst-case analysis.
• Usually need a fallback, if no ‘safe’ alloca-

tion can be made.
• Get real!

Distributed mutual exclusion
References for today: DS §10.4, Bacon §9.3,
Ben-Ari, Chapter 11, Tanenbaum, §3.2.

• Distributed processes need to read or up-
date certain shared data structures: need
mutual exclusion!

• Centralized algorithm
• A distributed algorithm (Ricart &

Agrawala)
• Token passing in a virtual ring of processes

Centralized algorithm (1)
• Simulate how it’s done on a single-

processor system.
• One process is the co-ordinator.
• Whenever a process wants to enter a criti-

cal region, it sends a request message to the
co-ordinator, stating which critical region
it wants to enter, and asks for permission.

• When it’s safe, the co-ordinator replies,
and the requesting process enters the
critical region.

• If it isn’t yet ‘safe’, the co-ordinator can
either refrain from replying for the time

being, or send back a message ‘permission
denied’. The request is queued.

Centralized algorithm (2)
• Guarantees mutual exclusion
• Fair, since FIFO queue and no starvation
• Easy to implement
• Efficient: requires three messages per use

(request, grant, release)
• BUT! Co-ordinator is a single point of fail-

ure. (And how do you distinguish a dead
co-ordinator from ‘permission denied’?)

• In a large system, a single co-ordinator can
become a performance bottleneck.

Distributed algorithm (1)
• Ricart and Agrawala (1981)
• Need unique global timestamps
• Need reliable communication; a broadcast

facility is a bonus
• The basic idea: when a process wants to

enter a critical region, it:
1. Builds a message containing the

name of the critical region, its own
process number, and the current time.

2. Sends the message to all other
processes (using broadcast if avail-
able!).

3. Waits for ‘OK’ messages to come
back from all other processes.

Distributed algorithm (2)
• When a request comes in:

– If the receiver is not in that critical
region and doesn’t want to enter, send
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back an ‘OK’.
– If the receiver is in that critical region,

don’t reply, but queue the request.
– If the receiver wants to enter that

critical region but hasn’t done so, it
compares the incoming timestamp
with the timestamp it sent out; lowest
one wins! If the incoming message
has the lower timestamp, send back
an ‘OK’; otherwise queue it.

• When a process exits a critical region, it
sends ‘OK’ messages to all processes on
its queue and deletes them from the queue.

Distributed algorithm (3)
• Mutual exclusion guaranteed, without

deadlock or starvation.
• 2(n− 1) messages per critical region entry

(n is the total number of processes). (Has
been refined ton.)

• No single point of failure.
• Now there aren points of failure!
• Solve the problem withmessage acknowl-

edgementsand timeouts.
• All processes are involved in all decisions.

Each process must do the ‘same thing’.
• The group of processes may change . . .
• Every process is a bottleneck.
• Slower, more complicated, more expen-

sive, and less robust than the centralized
algorithm.

Token ring algorithm
• Impose a logical ring on the processes.

• Pass a token around the network.
• If you’re not interested in entering a critical

region when you get the token, just pass it
on.

• If you are, hold on to the token, do your
critical stuff, and only pass on the token
when you have finished.

• Oops, what happens if the token gets
lost? How do you tell if it’s really lost, or
someone is just holding on to it for a long
time?

• Crashes: require an acknowledgement
after passing on the token. If a node has
crashed, remove it from the logical ring
and bypass it.

Election algorithms
• Rationale: many distributed algorithms

require one process to be a co-ordinator (or
special in some way). How does a system
decide on –elect– a co-ordinator during
execution?

• Need some way to distinguish processes,
e.g. network address (maybe with process
ID)

• In general, election algorithms elect the
highest process number.

• Assume that each process knows the
process number of every other process,
but not necessarily which ones are up and
which are down at the moment.

• The goal: after an election, all processes
agree on who the co-ordinator is.

The Bully Algorithm (1)
• Garcia-Molina (1982)
• When a processP notices that the co-

ordinator is down, it initiates an election:
– P sends an ELECTION message to

all processes with higher numbers.
– If no one responds,P wins and

becomes co-ordinator.
– If a process responds, it takes over,

andP ’s job is done.
• If a process receives an ELECTION mes-

sage, it sends back an OK message, and
then starts an election (unless it is already
running one).

The Bully Algorithm (2)
• Eventually, all but one process gives up,

and that is the new co-ordinator, and it
announces victory to all other processes by
sending them a COORDINATOR message.

• When a process that was down comes back
up, it starts an election.

• If that process is the highest-numbered, it
will win and take over.

• The biggest guy always wins, hence the
name ‘bully algorithm’.

Motivation:
Parallel databases

References: chapter 8 of E. V. Krishnamurthy,
Parallel processing: principles and practice,
Addison-Wesley, 1989; DS 12, Bacon 18.

• A database (DB) is a collection of closely-
related data stored in a computer system.
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• A user accesses the contents of a DB using
a (high-level)query language.

• There is a system which provides an inter-
face between the user and the database: the
database management system(DBMS).

DBMS tasks
• The DBMS is supposed to provide a ‘user-

friendly’ way of specifying operations on
the database. It is also supposed to provide:

Security: authorised access only
Integrity : maintain consistency constraints, e.g.

not over-filling aircraft
Concurrency control: when there are several

concurrent users
Crash protection and recovery: backups and

restorations (‘roll forward’)

Actions
• Operations on the data in databases are

calledactions. The following are typical:

Delete: delete all records satisfying a query
Insert: insert a new record
Update: specify a new value to be taken by the

object being modified
Retrieve: fetch relevant data satisfying a query

• A database can be in one of three states:
open (ready for processing);active

(processing);closed (finished).
• An action required by a user is called a

request. A finite sequence of such requests
is called atransaction.

Transactions (part 1)

Building transactions
• A transactionis a ‘meaningful atomic op-

eration’ (Bacon), which may or may not be
composite.

• Transactions may be allowed at many lev-
els in a system. Some systems allow them
to be nested.

• Successful termination is calledcommit-
ment.

• Undoing the effects of a partially-executed
transaction is calledaborting.

• If a system allows a user process to abort a
transaction, it’s possible to useoptimistic
concurrency control: allow more concur-
rency than is strictly safe, and undo any
problems that arise.

ACID properties
(Not to be confused with LSD properties)
A transaction(often called anatomic transaction)
has the following properties:

Atomicity All or none of the sub-operations
are performed. Atomicity helps achieve
crash resilience. If a crash occurs, then it’s
possible to roll back the system to the state
before the transaction was invoked.

Consistency Transforms the system from one
consistent state to another.

Isolation Results (including partial results) are
not revealed unless and until the transac-
tion commits. If the operation accesses
a shared data object, invocation does not
interfere with other operations on the same

object.
Durability After a commit, results are guar-

anteed to persist, even after a subsequent
system failure. This implies that the results
are saved in permanent storage.

‘The plan’

• We want several transactions to be exe-
cuted in parallel.

• Implementing isolation is hard.
• We’ll see three solutions – schedulers –

later.
• What happens if you don’t implement

isolation? Loss of data integrity!

Data integrity

• A database isconsistentif it satisfies a set
of explicit logical conditions, calledin-
tegrity constraints (boolean expressions).

• A database must proceed from one con-
sistent state to another. If an action would
violate this, it must be rejected, and the
original data restored.

• Inconsistency happens viaside effects. (If
only retrieval operations occur, these can’t
happen.) There are three types:

ru: userUi retrieves an object; userUj updates
the same object;

ur: userUi updates an object; userUj retrieves
the same object;

uu: userUi updates an object; userUj updates
the same object.
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Inconsistencies (1)

• There are three different kinds of inconsis-
tencies which arise from one or more of
these types of side effects.

• Lost action/update: here,U1 loses its
update at time step 3. It is a combination
of anru and auu side effect.

Time step U1 U2

0 Retrieve A . . .
1 . . . Retrieve A
2 Update A . . .
3 . . . Update A

• To resolve this conflict, object A should be
accessed by only one transaction at a time.

Inconsistencies (2)

• Uncommitted dependency:U1’s retrieve
is no longer valid after the abort.

• This is realistic:U2 could have crashed,
andU1 may have already terminated. This
is aur side effect.

Time step U1 U2

0 . . . . . .
1 . . . Update A
2 Retrieve A . . .
3 . . . Abort

Inconsistencies (3)

• Inconsistent analysis/retrievals: e.g.
U1 computes F+C+H, where F=$100,
C=$200, H=$300;U2 transfers $100 from
H to F.

Time step U1 U2

0
1 Retrieve F

(total=$100)
2 Retrieve C

(total=$300)
3 Retrieve H
4 Update H

(H←H−$100)
5 Retrieve F
6 Update F

(F←F+$100)
7 End transaction
8 Retrieve H

(total=$500)
• Combination of anru side effect on F, and

a ur side effect on H.

Serializability and consistency (1)
• Ignoring crashes (for the moment), acon-

sistent system statecan be maintained by
executing transactions serially.

• Any possible serial execution is deemed to
be acceptable. If you want two transactions
to be executed in a particular order, you
must impose this at a higher level (put
them together into a nested transaction).

• (If two operations can be performed in
either order with the same effect, they are
said to becommutative.)

• But within a single transaction, any two
operations on the same object are carried
out in the order specified in the transaction.

Serializing operations
See Bacon, Figures 18.1–18.3.

• Conflicting operations on one object must
be done in order:serialized.

• The components of composite operations
must be performed in order, but it’s not
necessary to serialize the whole lot.

• By delaying a part (or parts) of one or
more composite operations (interleaving),
it is possible to execute them concurrently,
while keeping the ordering and achieving
the necessary serialization.

Serializability and consistency (2)
• During concurrent execution, sub-

operations are interleaved. What are the
chances that two transactions will access
the same data?

• If a specific interleaving of sub-operations
can be shown to be ‘equivalent’ to some
serial execution, then such a concurrent
execution keeps the system in a consistent
state. The execution sequence is said to be
serializable.

• See examples in DS §12.4, Bacon §18.3.
• The challenge: achieve concurrent execu-

tion of transactions, while ensuring that
no transaction ever sees an inconsistent
system state.Maintain the appearance
of isolation!

Schedules
• When there are several users of a DBMS,

the transactions run concurrently, and their
individual requests are interleaved. This
interleaving is called aschedule(history,
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log).
• A serial scheduleis a schedule where

there is no interleaving, i.e. the requests of
transactions are kept together.

• If a schedule is equivalent to some serial
schedule (it produces the same effects), we
say it isserializable.

• A schedule is correct if it is equivalent to
a serial schedule.

• (Unfortunately, proving correctness is an
NP-complete problem, i.e. it probably
takes exponential time).

Some observations
• When shuffled, two transactions do not

necessarily produce the same effect that
they would produce if they were performed
serially.

• Retrieve and update operations should be
controlled to avoid inconsistencies.

• There needs to be a scheduler which
restricts possible sequences of retrieve-
update operations by locking them in
or out, yielding a consistent serializable
schedule.

• If the scheduler fails, there needs to be
a visible phenomenon so that corrective
action can be taken.

• Next time: what are the different types of
scheduler, and how do they work?

Transactions (part 2)
See DS 12, Bacon §8.6

• Identify abstract data object with

set of operations, e.g. bank account:
create, delete, read-balance,
check-balance, credit, debit.

• Identify non-commutative (conflicting)
pairs of operations, e.g.:

• Two credit operations commute.
• credit anddebit are commutative.
• read-balance anddebit are not.
• check-balance andcredit are not.

Condition for serializability
• Objects are uniquely identified.
• (Sub-)operations are executed without in-

terference (they are the finest granularity).
• A single clock is associated with each

object, indicating the time at which opera-
tions take place (and thus their order).

• Each object records the time at which each
operation invocation takes place (with the
transaction identifier).

• For serializability of two transactions
it is necessary and sufficient for the or-
der of their invocations of all conflicting
pairs of operations to be the same for
all the objects which are invoked by both
transactions.

Histories and serialization graphs
Bacon §18.7–8
• Histories: see Figures 18.7–9.
• Serializable history: a serializable exe-

cution of the transactions: all conflicting
pairs of operations on each object are in-
voked in the same order as in the given

history.
• An object is a witness to an order de-

pendency between two transactions if
they have invoked a conflicting pair of
operations on that object.

• Serialization graph: a directed graph;
vertices are transactions; edgeTi → Tj

iff some object is a witness to that order
dependency.

• A transaction history is serializable iff its
serialization graph is acyclic!

Is a schedule serializable?
• We need to find a total ordering of the set

of transactions that’s consistent with the
schedule:

– Each object knows which pairs of
operations conflict.

– Each object knows which trans-
actions have invoked conflicting
operations: it’s a witness to an order
dependency between them.

• If the order dependencies are consistent,
then you get an ordering for each pair of
transactions. If not, then there’s a cycle in
the serialization graph.

• Finding a total ordering of the set of trans-
actions: use a topological sort. You can do
it iff the graph is acyclic.

At run time . . .

• Maintain a serialization graph of the trans-
actions currently in progress.

• When a new transaction is submitted, cre-
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ate a ‘proposed schedule’ by adding the
operations of the new transaction to the
existing serialization graph.

• Do it so that you don’t end up with a cycle.

Transaction schedulers

DS 13, Bacon 19.

Three main types:

Locking: granularity: locking at the level of
objects, predicates, or structures.

Timestamp: a serialisation order is selected
before the transactions are processed.
Transaction execution is forced to obey
this order. Each transaction is assigned
a timestamp, and when conflict arises,
timestamp order is used.

Optimistic : assume conflict is unlikely, and
patch things up if they go wrong.

Locking

• Every object in the database can belocked.
• Warning: once we have locks, we have

the possibility of deadlock: we need a
lock manager to to deadlock detection or
avoidance.

• A transaction locks each object some time
before it needs it, and unlocks it some time
after it has finished with it.

• A possible approach: lock all the required
objects at the beginning of a transaction,
and unlock them all at commit or abort.

• Is it possible to achieve better concurrency?

Two-phase locking (2PL)
• Each transaction has agrowing phase:

locks can be acquired, but not released.
• Then, each transaction has ashrinking

phase: locks can be released, but not
acquired.

• Strict 2PL: release all locks on commit.
(Avoids cascading aborts.)

• 2PL guarantees that conflicting pairs of op-
erations of two transactions are scheduled
in the same order: you get a serializable
schedule.

• Deadlock is possible.

Semantic locking
DS §13.1–2, Krishnamurthy 8
• Distinguish two types of locks: S (read,

shared) and X (write, exclusive).
• The idea: grab an S lock if you only

need to read the object. Any number of
transactions can get an S lock on an object.

• If you decide you want to update the
object, try to ‘upgrade’ to an X lock.

• An X lock is granted only after all other
transactions release any S or X locks on
the object.

Dealing with deadlock
• In a scheduler which supports locks, we

have (1) exclusive allocation (2) resource
hold while waiting (3) no preemption. So
we can get deadlock.

• Does the system already support aborting
transactions? If so, deadlock detection

followed by aborting the deadlocked trans-
actions is a good design option.

• Alternatively, put timeouts on lock re-
quests. Abort any transaction that has a
timeout on one of its lock requests.

Time-stamp ordering (TSO)
• Put a time-stamp on a transaction when it

starts.
• Recall that to get serializability we have to

keep the ordering of conflicting operations
consistent between two transactions.

• Use the time-stamp to determine which
transaction should be the first to execute a
conflicting operation.

• Suppose a transaction invokes an op-
eration. Suppose a second transaction
attempts to invoke a conflicting operation.
Compare time-stamps.

• If the time-stamp of the second transac-
tion is later than that of the first, then the
operation can go ahead.

• Otherwise, the second transaction is ‘too
late’ and must be aborted.

TSO properties
• As described, doesn’t enforce isolation;

may cause cascading aborts.
• Can be fixed: require the earlier (by

timestamp of the transactions) of a pair of
conflicting operations be committed before
proceeding. See Bacon §19.5.1.

• Doesn’t deadlock: there are no locks!
• Starvation? Unlikely in the sorts of scenar-
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ios where time-stamp ordering is used.

Optimistic concurrency control
• The premise: conflict is unlikely, i.e.

it’s unlikely for two transactions to be
operating on the same objects.

• Ensure a serializable execution, but achieve
high availability of objects: minimize de-
lay at transaction start.

• Don’t change persistent memory: work on
shadow copiesof objects.

• Each shadow copy has aversion: the ID of
the last transaction to update the object.

• On commit, validate the history to see if it
can be serialized with the transactions that
have been accepted since it started.

Phases for each transaction
1. Execution (read): execute the transaction

to completion on the shadow copies.
2. Validation: after commit, check the execu-

tion schedule to ensure serializability.
3. Update (write): update all changed objects

in order, transaction by transaction.

• Each transaction should interact with a
consistent set of shadow copies: apply up-
dates atomically across all objects involved
in the transaction.

Staying optimistic
• It’s possible to use sophisticated protocols

to keep everything consistent, e.g. two-
phase commit in a distributed TPS (see DS
§14.3, Bacon 21).

• Atomic commitment is bad for concur-
rency, and . . .

• . . . it misses the point: it’s supposed to be
optimistic!

• So take a shadow copy of an object only
when needed. This is more likely to lead
to rejection at validation time. So what?

The validator
• The validator knows all about the trans-

actions whose validation or update phases
overlap. It must ensure there has been no
conflict.

• It checks: (1) the execution must be based
on a consistent system state; and (2) the
transactions must be serializable.

• If the validator says OK, the transaction
goes into a queue, waiting to be written.

• Note: here, transaction order is determined
at validation time: in theory, the validator
may insert at any place in the queue! Cf.
time-stamp ordering.

Properties of OCC
• No deadlock.
• Maximally parallel.
• Very efficient if the transactions are small

and widely spaced.
• Becomes inefficient if transactions tend to

overlap.
• Starvation if the premise (of minimal

conflict) is violated.

More on Transactions
(This lecture material is by Vijay Boyapati.)

• References for today:

– Transaction Processing, J. Gray & A.
Reuter

– Distributed Databases, S. Ceri &
G. Pelegatti

– DS 14

Transactions

• Flat
• Nested
• Distributed

Definition [Ceri & Pelegatti] :
A transaction is anatomicunit of database ac-
cess, which is either completely executed or
not executed at all.

Flat Transactions
• A flat transaction,FT, is an operation,

performed on a database, which may
consist of several simple actions.

• From the client’s point of view the oper-
ation must be executedindivisibly (atom-
ically).

• e.g. Withdrawing $20 dollars from your
account:

CheckClientPassWordValid();

openClientAccount();

removeAmount(amount);

sendCashToATM(amount);

• Main disadvantage withFTs: If one
action fails the whole transaction must
abort.

72



Nested Transactions (1)

Used to overcome the disadvantages of flat
transactions.

• A nested transaction,NT, is a treeof
transactions.

• Transactions at the leaves areFTs.
• The root of the tree is thetop level trans-

action.
• Other nodes are calledsubtransactions.
• The termsparentandchild transaction

are used in the obvious way.
• A subtransaction can commit (its job is

done) or roll back (it may have crashed).

Nested Transactions (2)

e.g. Transferring to a better bank account:

• Create NAB account.
• Transfer money from Commonwealth

account to NAB account.
• Close Commonwealth account.

Top-level
transaction

Transfer to
better account

Create NAB
Transfer cash

from
Commonwealth

to NAB

Close
Commonwealth

account account

totalCash =
getBalance( C );

withdraw( C,
totalCash );

deposit( N,
totalCash );

Nested Transactions (3)

• A subtransaction may abort and roll
back, which causes its descendents to
abort and roll back – even if they have
committed.

• Only the descendents are required to roll
back!

– This is the key difference between
FTs and NTs.

– With NTs, the subparts might not
‘bring down’ the whole transaction.

The first point is important (why?): Subtrans-
actions of a nested transaction, while still hav-
ing the A, C and I properties,should not have

durability (D).

Distributed Transactions (1)

Definition [J. Gray & A. Reuter] :
A distributed transaction is a transaction that
runs in a distributed environment and has to
use several (>1) servers in the network,de-
pending on where the data is.

• The distribution of a transaction should
be transparentto the client that issued it.

• Distribution is the concern of the data
manager.

• Don’t confuse distributed and nested
transactions:

– ‘Distributedness’ relates to where
the data is held (low level concern).

– ‘Nestedness’ relates to how the
client decomposes a transaction
(high level concern).
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Client

Transaction

Data manager

Servers

networked system

ACID properties of Distributed Transactions
• Scenario: We have several servers work-

ing on one transaction (because data re-
quired in the transaction is distributed
around a network).

• Problem: How do we make this transac-
tion execute indivisibly?

• Solution: Use two-phase commit (2PC)
protocol.

2PC protocol (1)

• Initialization
– The first server contacted is deemed

to be thecoordinator.
– Other servers used in the transac-

tion, known asworkers, are told the
name of the coordinator.

– Each server in the transaction tells
the coordinator its name.

• Phase 1
– Coordinator asks workers whether

they can commit to their part of the
transaction.

– Workers send their responses to the
coordinator.

IMPORTANT: If a worker says it can
commit then it must eventually be able to
do that (even in the event of a crash).

2PC protocol (2)

• Phase 2
– Coordinator checks responses. If

everyone (including coordinator)
can commit, coordinator sends a
message to all workers telling them
to commit. Otherwise coordinator
tells everyone to abort and sends an
abort message to the client (sorry,
couldn’t do the transaction).

– If workers were asked to commit,
they send a done message to the
coordinator after completing their
job.

– Once the coordinator receives all
the done messages it removes all
transaction state information and
sends a done message to client.

2PC performance

• In the event of a crash, 2PC can waste
lots of processing time!
At which stage?

• No bound possible on total time taken.
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Distributed Transactions (2)
• 2PC gives us atomicity.
• There are other concerns when dealing

with distributed transactions:
– Maximising concurrency (for per-

formance)
– Concurrency control (e.g. using

locks)
– Distributed deadlock detection
– Data replication

Replication

• In large distributed systems most data
objects will have replicas.

• Why replicate?
– Performance (e.g. local cache)
– Fault transparency
– rm *

• Problem: maintaining consistency.
• We sometimes want (and often require)

one-copy serializability: Transactions
performed by various clients on repli-
cated data items appear the same as
transactions performed one at a time on
single data items.

• Usereplica managers.

Replica managers

• A replica manager (RM) is a process cre-
ated to manage a replica of a data object.

• If the RM is told to perform an operation
on its replica it must communicate with
all the other replica managers, informing
them of the operation.

• Communicating after the operation is
complete would be preferable (it would
reduce communication in the event of a
failure).

• This is not possible(why?)
• One-copy serializability!

The Internet

• Functionally:
– a big heterogeneous computer net-

work;
– the world’s largest distributed sys-

tem.
• Operationally: a community of users,

sharing
– bandwidth (network connections);
– storage capacity;
– computing power;
– information;
– services
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How it developed (1)
1960s RAND Corp (Cold War think-tank):

How could US authorities communicate
after a nuclear war?

1964 RAND proposal: network with no
central authority, capable of operating
while in tatters. Network assumed to
be unreliable at all times. All network
nodes have equal status.

1968 National Physical Laboratory (UK)
develops first such test network.

1969 ARPANET developed by US Defence
Advanced Research Projects Agency
(DARPA). First node installed at
UCLA.

1972 37 nodes on ARPANET. Intended use
was shared facilities, but main practical
use was e-mail and news.

1973 First international nodes on ARPANET.
1977 TCP/IP in common use on ARPANET.

Connections to ARPANET remain
tightly controlled.

How it developed (2)
1983 Military break off, to become MILNET.
1984 National Science Foundation begins

NSFnet. Constant bandwidth upgrades.
Growing number of users.

1988 Internet Worm released, disabling most
of the Internet.

1989 End of ARPANET. NSFnet takes up the
slack.

1991 WAIS and gopher software released.
1992 World Wide Web (text only).
1993 Mosaic web browser produced: graphics

for the WWW. Internet explosion!
WWW proliferates at a rate of
341 634% of service traffic. Gopher
grows at a rate of 997%.
Development of benign ‘Internet worms’
to find web pages, and index them.

1995 NSFnet retires as a backbone service.
Many other backbone services now

Who owns the Internet?
• Originally, DARPA provided guidelines

for use.
• Later, NSFnet (because they owned the

only backbone).
• Now, nobody owns it!
• Analogy with the English language:

– Nobody owns it.
– It evolves according to need.
– It’s up to you to learn how to use it

properly.
– No ‘English, Inc.’. No board of di-

rectors.
– Groups (governments and compa-

nies) may teach how to use it.

What people do on the Internet
• Electronic mail
• Discussion groups (Usenet, IRC, MUDs)
• Long-distance computing
• File transfers
• Banking
• Shopping
• Finding information (weather, stock ex-

change, anything!)

E-mail
• Faster than paper mail (snail mail)
• Cheaper than paper mail (often free)
• Send text, software, images, sounds,

movies.
• Subscriptions to news, journals, interest

groups.
• Personal, professional communications.

• Broadcast communications.

Discussion groups

• Newsgroups, IRC, MUDs, mailing lists
• Real-time responses or batch replies
• Discussion, gossip, commentary, confer-

encing, requests for information, advice,
counselling, collaborations (fiction and
non-fiction), finding a spouse

• Moderated or unmoderated
• Text, audio, visual (e.g. CU-SeeMe)

Long-distance computing

• Remote logins to high-performance com-
puters

• Remote catalogue searches
• Co-ordinated multicomputing environ-

ments, e.g. PVM, MPI, autoson (local
product!), etc.

• Factorization of numbers which are a
product of large primes

File transfers

• WWW, FTP
• Archie, gopher, WAIS
• Remote publishing
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• Text, audio, visual: still frames, or
movies

• Browsing, searching (LEO)

Some risks
• Monitoring your Internet use: compiling

information about you!
• Abuse of privilege: publication of private

information.
• Misleading or incorrect information.
• Fraudulent representation.
• Attacks on your hardware/software/data:

hacking, denial of service attacks, . . .
• Morally objectionable content: offensive,

inciteful, obscene, degrading, dangerous,
. . .

• System failure, misbehaviour, and other
malfunctions

Dealing with the risks
Prevention
• Reducing the opportunities, e.g. limited

site access, user authentication schemes,
strong data encryption, tighter manage-
ment, greater accountability

Deterrence
• Making it undesirable or difficult to place

someone at risk, e.g. penalties (fines, de-
nial of access, imprisonment), obstruc-
tions (data encryption, obscurity)

Detection
• Finding out what happened as soon as

possible
• Limiting/correcting the damage

Insurance
• Getting compensation for loss, injury,

etc.
Censorship

What may be censored? Content that is
thought:
• seditious (inciting people against the gov-

ernment)
• subversive (overthrowing something es-

tablished)
• to incite racial or religious hatred
• to infringe religious or cultural norms
• obscene
• defamatory
• contemptuous of court or parliament
• to breach copyright, the Official Secrets

Act, etc.
Censorship in Australia

• Office of Film and Literature Classifica-
tion classifies:

– publications
– films and videos
– computer games

• Censorship classifications:
– unrestricted (e.g. G-rated movies)
– restricted (e.g. R ratings)
– refused classification (i.e. banned)

• Censorship in Australia:
– hard-core pornography (especially

involving children, animals, vio-
lence, cruelty, exploitation)

– incitement to or instruction in crime
(especially violence or illegal drugs)

– It’s an offence to possess Refused
Classification material in Australia,
and an offence to import, sell, or
hire such material.

Censorship and the Internet
• Is it ‘importing’ to download material

from the Internet?
• Is is ‘possessing’ to have the material on

your hard disk? In your account? In a
public area? In a private area?

• What if the content is not known to you?
• What if it’s encrypted, or stored invisibly

in some bigger file?
• What if it’s on a client machine? What if

it’s on a server?
• What if the computer stores it in

(volatile) memory, prior to sending it
somewhere else?

• What if the material is uploaded from a
machine outside Australia?

• What if it’s requested from a machine
outside Australia?

• What if such content is placed on your
screen without your consent?

• State versus Federal enforcement.

Self-censorship on the Internet
• Moderated newsgroups
• E-mail/news ‘kill’ files
• ‘Net nannies’: web filters that block cer-

tain sites, pages with keywords, etc.
• ‘Trusted sites’: server sites that uphold

your personal values
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• Delegated censorship: ask someone else
to censor for you

• Personal censorship: do it yourself

Who is responsible?
• Infrastructure providers (e.g. Telstra)
• Service providers (e.g. Ozemail)
• Content providers (e.g. the person who

owns the web page)
• Users (people who are browsing, down-

loading, reading)

Object-Oriented Middleware
What are we talking about?
• CORBA: Common Object Request Bro-

ker Architecture, by OMG: Object Man-
agement Group (http://www.omg.org/)

• DCOM: Distributed Component Object
Model, by Microsoft

• RMI: Remote Method Invocation, by Sun
(been there, done that)

CORBA references: Steve Vinoski (http:

//www.iona.com/hyplan/vinoski/).
Object Management Architecture (OMA)

‘The OMA is composed of anObject Model
and aReference Model. The Object Model de-
fines how objects distributed across a hetero-
geneous environment can be described, while
the Reference Model characterizes interactions
between those objects.’
‘In the OMA Object Model, an object is an
encapsulated entity with a distinct immutable
identity whose services can be accessed only
through well-definedinterfaces. Clients is-

sue requests to objects to perform services on
their behalf. The implementation and location
of each object are hidden from the requesting
client.’
OMA Reference Model Interface Categories

Object Request Broker

Application 
Interfaces

Common 
Facilities

Object 
Services

Domain 
Interfaces

OMA components
Object Request Broker (ORB): ‘mainly respon-
sible for facilitating communication between
clients and objects.’ It uses:

1. Object Services: domain-independent
interfaces used by many distributed ob-
ject programs, e.g. Naming Service and
Trading Service.

2. Common Facilities: like above, but more
end-user oriented, e.g. Distributed Docu-
ment Component Facility (DDCF).

3. Domain Interfaces: like above, but
application-domain oriented, e.g.
telecommunications, medical, financial.

4. Application Interfaces: developed for a
given application.

CORBA Components
• ORB Core
• OMG Interface Definition Language

(IDL)
• Language Mappings
• Interface Repository
• Stubs and Skeletons
• Dynamic Invocation and Dispatch
• Object Adapters
• Inter-ORB Protocols

How CORBA fits together

DII ORB
INTERFACEINTERFACE

ORBORB
CORECORE

operation()operation()

IDLIDL
STUBSSTUBS

OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON

DSIDSI

in  argsin  args

out  args + return  valueout  args + return  value

CLIENTCLIENT

GIOPGIOP//IIOPIIOP

SERVANTSERVANT

ORB Core
Key feature of the ORB:transparency! The
ORB hides object:
• location
• implementation
• execution state
• communication mechanisms

Clients get object references by using:
• object creation
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• directory service (e.g. Naming and Trad-
ing)

• convert to string and back
The idea: ‘keep the ORB as simple as possi-
ble, and push as much functionality as possible
to other OMA components’.

OMG IDL
• Like Sun RPC IDL
• Looks like C/C++
• Built-in types like C, also string, se-

quence, fixed, typedef
• Only define types and functions, not data
• Multiple inheritance of interfaces

interface Fortune
{

exception IndexOutOfBounds
{

short number;
string fortune;
string errorMsg;

};
string getFortune(in short number)

raises (IndexOutOfBounds);
oneway void setFortune(in short

number, in string fortune);
};

Language mappings
• The current (2.2) spec gives mappings

for C, C++, Smalltalk, COBOL, Ada,
and Java.

• Others (e.g. Bourne shell, Perl, Eiffel,
Modula-3) have been proposed (and are
being used)

• The mappings for some languages are
cleaner than others (guess which).

• Java seems to have been designed with
CORBA in mind.

Interface repository (IR)
• ‘Normally’ you have to know about all

the interfaces you’re going to be using at
compile time.

• The IR ‘allows the OMG IDL type sys-
tem to be accessed and written program-
matically at runtime’.

• Basically, it’s like reflection in Java.
• You can find out about the interfaces that

are ‘out there’ – including which types
and functions they define – and then in-
voke those functions (with DII).

• If you get hold of some CORBA object,
you can track down its interface(s), in-
voke methods, etc.

Stubs and skeletons
• ‘A stub is a mechanism that effectively

creates and issues requests on behalf of
a client, while a skeleton is a mechanism
that delivers requests to the CORBA ob-
ject implementation.’

• ‘The stub essentially is a stand-in within
the local process for the actual (possibly
remote) target object.’

• ‘The stub works directly with the client
ORB to marshalthe request.’

• ‘The server ORB and the skeleton coop-
erate tounmarshalthe request.’

• Etc. etc., as for RMI

Dynamic invocation and dispatch
• Dynamic Invocation Interface (DII): ‘sup-

ports dynamic client request invocation’
• Dynamic Skeleton Interface (DSI): ‘pro-

vides dynamic dispatch to objects’

View them ‘as ageneric stubandgeneric
skeleton, respectively’.
DII supports Synchronous (client blocks), De-
ferred Synchronous (client blocks when answer
needed), and Oneway (‘fire and forget’) Invoca-
tion.

Object adapters
• ‘The glue between CORBA object imple-

mentations and the ORB itself.’
• Object registration: turn programming

language entities into CORBA objects
• Object reference generation
• Server process activation
• Object activation
• Request demultiplexing: handle multiple

connections
• Object upcalls: dispatch requests to reg-

istered objects

Inter-ORB protocols
• Multiple ORBs need to talk to each other
• General Inter-ORB Protocol (GIOP):

‘specifies transfer syntax and a standard
set of message formats for ORB inter-
operation over any connection-oriented
transport. GIOP is designed to be sim-
ple and easy to implement while still
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allowing for reasonable scalability and
performance.’

• Internet Inter-ORB Protocol (IIOP):
‘specifies how GIOP is built over TCP/IP
transports.’

• Support for GIOP and IIOP is manda-
tory; an implementation may provide
others.

DCOM
• CORBA is aspecification; DCOM is an

implementation(not of CORBA) (by Mi-
crosoft).

• Similar aims and objectives.
• IDL based on Open System Founda-

tion’s Distributed Computing Environ-
ment (DCE) IDL (see Tanenbaum): very
complicated!

• You guessed it: supports C++, C, VB,
VJ++.

• Built into NT; available for 95/98; So-
laris version.

So what?
• Another layer in your software: some-

where in themiddle.
• Lots of good implementations of

CORBA out there, and everyone is talk-
ing about it.

• Has anyone built anything useful with it?
Maybe.

• CORBA and RMI: Sun says use RMI
within a group of Java servers; use
CORBA to talk to ‘the outside world’.

• CORBA spec talks about CORBA/COM
interoperability: recognition of the in-
evitable.

Where we’ve been (1)
• Evolution of IPC primitives (via shared

or distributed memory)
• Choosing primitives:

– synchronous or asynchronous
– process identification
– data flow
– process creation

• Message passing:
– technical details
– options
– broadcast & multicast

Where we’ve been (2)
• Case studies: Ada (rendezvous), occam

(channels), Linda (tuple space)
• Futures
• BSD Sockets and System V streams
• Connection-oriented and connectionless

protocols
• Iterative and concurrent servers
• Modelling crashes
• Crash resilience
• Idempotent and atomic operations

Where we’ve been (3)
• Stable and persistent storage; logging and

shadowing
• NVRAM versus disks
• Distributed IPC
• Global logical time (Lamport’s algo-

rithm)
• Client/server
• RPC
• Handling lost messages

Where we’ve been (4)
• Correctness: safety and liveness proper-

ties
• Fairness
• Deadlock and livelock
• Deadlock detection, prevention, and

avoidance
• Distributed mutual exclusion: centralized

and distributed algorithms
• Election algorithms

Where we’ve been (5)
• Transaction processing systems
• Schedules; serializability and consistency
• ACID properties
• Parallel databases
• Actions and effects; inconsistencies
• Histories and serialization graphs
• Transaction schedulers

Where we’ve been (6)
• Types of locking: 2PL, semantic locking
• Time-stamp ordering
• OCC
• Types of transactions: flat, nested, dis-

tributed; replication of data
• Java
• RMI
• The Internet and censorship
• O-O middleware: CORBA, DCOM, RMI
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• In the labs: MPI, semaphores, dining
philosophers, worker farming, bully algo-
rithm, Java
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